This is the implementation of our PAMI work Online Meta Adaptation for Fast Video Object Segmentation
.
-
Clone the MVOS repository
git clone https://github.com/huaxinxiao/MVOS-OL.git
-
Install - if necessary - the required dependencies:
- Python (tested with Anaconda 2.7 and 3.6)
- PyTorch (
conda install pytorch torchvision -c pytorch
- tested with PyTorch 0.3, CUDA 8.0)
-
Download and softlink the DAVIS datasets.
ls -s /your/davis/JPEGImages/ ./dataset/davis/
For DAVIS-17, we split the multiple instances from the same video and name the file as
/Annotations/480p_split
.ls -s /your/davis/Annotations/ ./dataset/davis/
-
Download the pre-trained segmentation and meta models and put them under
./snapshots/
.Pre-trained base segmentation model
-
Run the demo script.
demo_mvos_davis1X.py
shows the process of meta adaptation on the first frame.demo_mvos_ol_davis1X.py
shows the process of online meta adaptation.
@article{xiao2018online,
title={Online Meta Adaptation for Fast Video Object Segmentation},
author={Huaxin Xiao and Bingyi Kang and Yu Liu and Maojun Zhang and Jiashi Feng},
journal={{IEEE} Trans. Pattern Anal. Mach. Intell.},
year={2018}
}