Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Official callbacks] SDXL Controlnet CFG Cutoff #9311

Merged
merged 5 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 56 additions & 3 deletions src/diffusers/callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,13 +97,17 @@ def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[s

class SDXLCFGCutoffCallback(PipelineCallback):
"""
Callback function for Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
`cutoff_step_index`), this callback will disable the CFG.
Callback function for the base Stable Diffusion XL Pipelines. After certain number of steps (set by
`cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG.

Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
"""

tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
tensor_inputs = [
"prompt_embeds",
"add_text_embeds",
"add_time_ids",
]

def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
Expand All @@ -129,6 +133,55 @@ def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[s
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
callback_kwargs[self.tensor_inputs[2]] = add_time_ids

return callback_kwargs


class SDXLControlnetCFGCutoffCallback(PipelineCallback):
"""
Callback function for the Controlnet Stable Diffusion XL Pipelines. After certain number of steps (set by
`cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG.

Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
"""

tensor_inputs = [
"prompt_embeds",
"add_text_embeds",
"add_time_ids",
"image",
]

def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index

# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
)

if step_index == cutoff_step:
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.

add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens

add_time_ids = callback_kwargs[self.tensor_inputs[2]]
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector

# For Controlnet
image = callback_kwargs[self.tensor_inputs[3]]
image = image[-1:]

pipeline._guidance_scale = 0.0

callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
callback_kwargs[self.tensor_inputs[3]] = image

return callback_kwargs


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,7 @@ class StableDiffusionXLControlNetPipeline(
"add_time_ids",
"negative_pooled_prompt_embeds",
"negative_add_time_ids",
"image",
]

def __init__(
Expand Down Expand Up @@ -1540,6 +1541,7 @@ def __call__(
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
image = callback_outputs.pop("image", image)

# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
Expand Down
Loading