Yihao Zhao, Ruihai Wu, Hao Dong, "Unpaired Image-to-Image Translation using Adversarial Consistency Loss", ECCV 2020
For environment:
conda env create -f acl-gan.yaml
For dataset: The dataset should be stored in the following format:
\dataset
| \train
| | \trainA
| | \trainB
| \test
| | \testA
| | \testB
For training:
python train.py --config configs/male2female.yaml
For test:
python test.py --config configs/male2female.yaml --input inputs/test_male.jpg --checkpoint ./outputs/male2female/checkpoints/test.pt
For more results, please refer to our paper.
If you find this code useful for your research, please cite our paper:
@inproceedings{zhao2020aclgan,
title={Unpaired Image-to-Image Translation using Adversarial Consistency Loss},
author={Zhao, Yihao and Wu, Ruihai and Dong, Hao},
booktitle={ECCV},
year={2020}
}