-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Checkpoint, start on MISMIP test case
- Loading branch information
1 parent
19da685
commit 964966a
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
import argparse | ||
import numpy as np | ||
import firedrake | ||
from firedrake import ( | ||
sqrt, exp, min_value, max_value, inner, as_vector, Constant, dx, interpolate | ||
) | ||
from icepack.constants import ( | ||
ice_density as ρ_I, | ||
water_density as ρ_W, | ||
gravity as g, | ||
glen_flow_law as n, | ||
weertman_sliding_law as m, | ||
) | ||
from dualform import ice_stream | ||
|
||
|
||
lx, ly = 640e3, 80e3 | ||
Lx, Ly = Constant(lx), Constant(ly) | ||
ny = 20 | ||
nx = int(lx / ly) * ny | ||
area = lx * ly | ||
|
||
mesh = firedrake.RectangleMesh(nx, ny, lx, ly, diagonal="crossed") | ||
|
||
# Set up some function spaces. TODO: Make it work for higher degree. | ||
cg = firedrake.FiniteElement("CG", "triangle", 1) | ||
dg = firedrake.FiniteElement("DG", "triangle", 0) | ||
|
||
Q = firedrake.FunctionSpace(mesh, cg) | ||
V = firedrake.VectorFunctionSpace(mesh, cg) | ||
Σ = firedrake.TensorFunctionSpace(mesh, dg, symmetry=True) | ||
T = firedrake.VectorFunctionSpace(mesh, cg) | ||
Z = V * Σ * T | ||
|
||
# Set up the basal elevation. | ||
x, y = firedrake.SpatialCoordinate(mesh) | ||
|
||
x_c = Constant(300e3) | ||
X = x / x_c | ||
|
||
B_0 = Constant(-150) | ||
B_2 = Constant(-728.8) | ||
B_4 = Constant(343.91) | ||
B_6 = Constant(-50.57) | ||
B_x = B_0 + B_2 * X**2 + B_4 * X**4 + B_6 * X**6 | ||
|
||
f_c = Constant(4e3) | ||
d_c = Constant(500) | ||
w_c = Constant(24e3) | ||
|
||
B_y = d_c * ( | ||
1 / (1 + exp(-2 * (y - Ly / 2 - w_c) / f_c)) + | ||
1 / (1 + exp(+2 * (y - Ly / 2 + w_c) / f_c)) | ||
) | ||
|
||
z_deep = Constant(-720) | ||
b = interpolate(max_value(B_x + B_y, z_deep), Q) | ||
|
||
# Some physical constants; `A = ε_c / τ_c ** n`, `C = τ_c / u_c ** (1 / m)`. | ||
# Rather than work with the fluidity `A` and friction `C` directly, we use | ||
# these stress, strain rate, and velocity scales so that we can easily rescale | ||
# the physical constants under changing flow law and sliding exponents. | ||
ε_c = Constant(0.02) | ||
τ_c = Constant(0.1) | ||
u_c = Constant(1000.0) | ||
|
||
a = Constant(0.3) | ||
|
||
# Set up the boundary conditions. | ||
inflow_ids = (1,) | ||
outflow_ids = (2,) | ||
side_wall_ids = (3, 4) | ||
|
||
inflow_bc = firedrake.DirichletBC(Z.sub(0), Constant((0, 0)), inflow_ids) | ||
side_wall_bc = firedrake.DirichletBC(Z.sub(0).sub(1), 0, side_wall_ids) | ||
bcs = [inflow_bc, side_wall_bc] | ||
|
||
# Set up the solution variables, input data, Lagrangian, and solvers. | ||
fns = [ | ||
ice_stream.viscous_power, | ||
ice_stream.friction_power, | ||
ice_stream.boundary, | ||
ice_stream.constraint, | ||
] | ||
|
||
z = firedrake.Function(Z) | ||
δu = Constant(90) | ||
z.sub(0).interpolate(as_vector((δu * x / Lx, 0))) | ||
|
||
u, M, τ = firedrake.split(z) | ||
h = interpolate(Constant(100.0), Q) | ||
s = interpolate(max_value(b + h, (1 - ρ_I / ρ_W) * h), Q) | ||
h_min = Constant(10.0) | ||
p_I = ρ_I * g * max_value(h_min, h) | ||
p_W = -ρ_W * g * min_value(0, s - h) | ||
f = (1 - p_W / p_I) ** m | ||
kwargs = { | ||
"velocity": u, | ||
"membrane_stress": M, | ||
"basal_stress": τ, | ||
"thickness": h, | ||
"surface": s, | ||
"floating": f, | ||
"viscous_yield_strain": ε_c, | ||
"viscous_yield_stress": τ_c, | ||
"friction_yield_speed": u_c, | ||
"friction_yield_stress": τ_c, | ||
"outflow_ids": outflow_ids, | ||
} | ||
|
||
linear_exponents = {"flow_law_exponent": 1, "sliding_law_exponent": 1} | ||
J_l = sum(fn(**kwargs, **linear_exponents) for fn in fns) | ||
F_l = firedrake.derivative(J_l, z) | ||
firedrake.solve(F_l == 0, z, bcs) | ||
|
||
num_continuation_steps = 4 | ||
for t in np.linspace(0.0, 1.0, num_continuation_steps): | ||
exponents = { | ||
"flow_law_exponent": Constant((1 - t) + t * n), | ||
"sliding_law_exponent": Constant((1 - t) + t * m), | ||
} | ||
J = sum(fn(**kwargs, **exponents) for fn in fns) | ||
F = firedrake.derivative(J, z) | ||
firedrake.solve(F == 0, z, bcs) | ||
|
||
import matplotlib.pyplot as plt | ||
u, M, τ = z.subfunctions | ||
fig, axes = plt.subplots() | ||
axes.set_aspect("equal") | ||
axes.get_xaxis().set_visible(False) | ||
axes.get_yaxis().set_visible(False) | ||
colors = firedrake.tripcolor(u, axes=axes) | ||
fig.colorbar(colors, orientation="horizontal") | ||
plt.show() |