This code repository is a test repository for the paper "DenseGCN: A Multi-level and Multi-temporal Graph Convolutional Network for Action Recognition", used to test DenseGCN on the NTU RGB+D dataset and the NTU RGB+D 120 dataset.
- Download the raw data of NTU-RGBD and NTU-RGBD120. Put NTU-RGBD data under the directory
./data/nturgbd_raw
. Put NTU-RGBD120 data under the directory./data/nturgbd120_raw
.
- For NTU-RGBD, preprocess data with python data_gen/ntu_gendata.py.
- For NTU-RGBD120, preprocess data with python data_gen/ntu120_gendata.py.
cd ./model/Temporal_shift
bash run.sh
The model weights file is saved in . /weights
.
If you wish to run the test program, run the following command.
-
Testing the accuracy of DenseGCN in an x-view benchmark of the NTU RGB+D dataset.
python test.py --mode ntu_xview
-
Testing the accuracy of DenseGCN in an X-Sub benchmark of the NTU RGB+D dataset.
python test.py --mode ntu_sub
-
Testing the accuracy of DenseGCN in an X-Set120 benchmark of the NTU RGB+D 120 dataset.
python test.py --mode ntu_xset120
-
Testing the accuracy of DenseGCN in an X-Sub benchmark of the NTU RGB+D 120 dataset.
python test.py --mode ntu_sub120