Skip to content

A Julia package for calculating irreducible Brillouin zones for 2D or 3D crystal structures.

License

Notifications You must be signed in to change notification settings

jerjorg/SymmetryReduceBZ.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Documentation Build Status Aqua QA

SymmetryReduceBZ

The primary purpose of SymmetryReduceBZ is to calculate the irreducible Brillouin zone (IBZ) for crystal structures in 2D or 3D provided the real-space lattice vectors, atom positions, and atom types. It also contains methods for making unit cells primitive and lattice reduction. See the User Guide in the documentation for more details and usage examples in Python. Details of the algorithm are explained here.

Breaking changes in v0.2: See the NEWS.md file for a description of the breaking changes in v0.2.

Installation

SymmetryReduceBZ is a registered Julia package and can be installed using Julia's package manager Pkg.

using Pkg
Pkg.add("SymmetryReduceBZ")

In order to use the plotting functionality, you will also need to have the Python Matplotlib library installed, which PyCall.jl can setup automatically via Conda.jl. If you are installing PyCall, PyPlot, and SymmetryReduceBZ for the first time, just do ENV["PYTHON"]="" before running Pkg.add(["SymmetryReduceBZ", "PyPlot"]). Otherwise you can reconfigure PyCall to use Conda via:

ENV["PYTHON"]=""
Pkg.build("PyCall")

Examples

To calculate the irreducible Brillouin zone, provide the lattice and atomic basis to calc_ibz. The IBZ will be returned as a polyhedron from Polyhedra.jl, which can be viewed either as a convex hull or an intersection of half spaces.

import SymmetryReduceBZ.Lattices: genlat_CUB
import SymmetryReduceBZ.Symmetry: calc_ibz
a = 2.0
real_latvecs = genlat_CUB(a)
atom_types = [0,0]
atom_pos = Array([0 0 0; 0.5 0.5 0.5]')
coordinates = "Cartesian"
makeprim = false
convention = "ordinary"
ibz = calc_ibz(real_latvecs,atom_types,atom_pos,coordinates,
  makeprim,convention)

The arguments for calc_ibz are as follows:

  • real_latvecs: the real-space lattice vectors as columns of a matrix.
  • atom_types: a vector of atom types as integers.
  • atom_pos: the positions of atoms in the crystal structure as columns of a matrix.
  • coordinates: indicates the atoms are in "lattice" or "Cartesian" coordinates.
  • makeprim: make the unit cell primitive before calculating the IBZ if true.
  • convention: the convention used to go between real and reciprocal space. The two conventions are "ordinary" (temporal) frequency and "angular" frequency.
  • library::Polyhedra.Library=CDDLib.Library(): a polyhedron manipulation library
  • rtol=sqrt(eps(float(maximum(real_latvecs)))): (optional) a relative tolerance for floating-point comparisons.
  • atol=1e-9: (optional) an absolute tolerance for floating-point comparisons.

The vertices of the ibz are accessed with SymmetryReduceBZ.Utilities.vertices(ibz) as an iterator of vectors. Other attributes are accessible such as SymmetryReduceBZ.Utilities.volume(ibz). The faces of the IBZ are calculated with

import SymmetryReduceBZ.Utilities: get_uniquefacets
facets = get_uniquefacets(ibz)

facets is a list of points at the corners of each facet. The function get_uniquefacets returns a list of the points that lie on each facet. See the documentation for more details about the polyhedral interface.

The function plot_convexhulls is useful for visualizing the Brillouin zone and irreducible Brillouin zone. The arguments are the same as those from calc_ibz.

ENV["MPLBACKEND"]="qt5agg"
using PyPlot
import SymmetryReduceBZ.Plotting: plot_convexhulls
import SymmetryReduceBZ.Lattices: genlat_CUB
a = 2.0
real_latvecs = genlat_CUB(a)
atom_types = [0,0]
atom_pos = Array([0 0 0; 0.5 0.5 0.5]')
coordinates = "Cartesian"
makeprim = false
convention = "ordinary"
ax=plot_convexhulls(real_latvecs,atom_types,atom_pos,coordinates,
  makeprim,convention)

IBZ

The functions plot_2Dconvexhull and plot_3Dconvexhull allow greater customization of the appearance of the convex hull.

ENV["MPLBACKEND"]="qt5agg"
using PyPlot
import SymmetryReduceBZ.Symmetry: calc_bz, calc_ibz
import SymmetryReduceBZ.Plotting: plot_2Dconvexhull
real_latvecs = [1 0; 0 1]
convention="ordinary"
atom_types=[0]
atom_pos = Array([0 0]')
coords = "Cartesian"
makeprim=false
bz = calc_bz(real_latvecs,atom_types,atom_pos,coords,makeprim,convention)
ibz = calc_ibz(real_latvecs,atom_types,atom_pos,coords,makeprim,convention)
ax = plot_2Dconvexhull(bz,facecolor="deepskyblue",linewidth=3,edgecolor="cyan",alpha=0.2)
ax = plot_2Dconvexhull(ibz,ax;facecolor="coral",linewidth=3,edgecolor="magenta",alpha=0.4)
axis("off")

IBZ

ENV["MPLBACKEND"]="qt5agg"
using PyPlot
import SymmetryReduceBZ.Symmetry: calc_bz, calc_ibz
import SymmetryReduceBZ.Plotting: plot_3Dconvexhull
real_latvecs = [1 0 0; 0 1 0; 0 0 1]
convention="ordinary"
atom_types=[0]
atom_pos = Array([0 0 0]')
coords = "Cartesian"
makeprim=false
bz = calc_bz(real_latvecs,atom_types,atom_pos,coords,makeprim,convention)
ibz = calc_ibz(real_latvecs,atom_types,atom_pos,coords,makeprim,convention)
fig = figure()
ax = fig.add_subplot(111, projection="3d")
ax = plot_3Dconvexhull(ibz,ax,facecolors="pink",alpha=1,edgecolors="black",linewidths = 1)
ax = plot_3Dconvexhull(bz,ax,facecolors="deepskyblue",edgecolors="white",linewidths=1,alpha=0.2)
axis("off")

IBZ

About

A Julia package for calculating irreducible Brillouin zones for 2D or 3D crystal structures.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages