The dataset can be constructed followed by Bayesian Loss.
The pretrained model can be downloaded from GoogleDrive.
python test.py --net vgg19 --data-dir PATH_TO_DATASET --save-dir PATH_TO_CHECKPOINT
python test.py --net csrnet --data-dir PATH_TO_DATASET --save-dir PATH_TO_CHECKPOINT --resize True
python train.py --net vgg19 --data-dir PATH_TO_DATASET --save-dir PATH_TO_CHECKPOINT
If you use our code or models in your research, please cite with:
@inproceedings{wan2019adaptive,
title={Adaptive density map generation for crowd counting},
author={Wan, Jia and Chan, Antoni},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1130--1139},
year={2019}
}
@article{wan2020kernel,
title={Kernel-based Density Map Generation for Dense Object Counting},
author={Wan, Jia and Wang, Qingzhong and Chan, Antoni B},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2020},
publisher={IEEE}
}