Skip to content

joXemMx/Mean-Shifted-Anomaly-Detection

 
 

Repository files navigation

Mean-Shifted Contrastive Loss for Anomaly Detection

Official PyTorch implementation of “Mean-Shifted Contrastive Loss for Anomaly Detection”.

Virtual Environment

Use the following commands:

cd path-to-directory
virtualenv venv --python python3
source venv/bin/activate
pip install -r requirements.txt

Experiments

To replicate the results on CIFAR-10 for a specific normal class:

python main.py --dataset=cifar10 --label=n

Where n indicates the id of the normal class.

To run experiments on different datasets, please set the path in utils.py to the desired dataset.

Citation

If you find this useful, please cite our paper:

@article{reiss2021mean,
  title={Mean-Shifted Contrastive Loss for Anomaly Detection},
  author={Reiss, Tal and Hoshen, Yedid},
  journal={arXiv preprint arXiv:2106.03844},
  year={2021}
}

About

Mean-Shifted Contrastive Loss for Anomaly Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.1%
  • Jupyter Notebook 23.9%