Paper:
https://arxiv.org/abs/2105.14766 (arXiv)
https://www.ieee-jas.net/en/article/doi/10.1109/JAS.2022.105563 (IEEE/CAA JAS)
The code is for the work:
@article{liang2021BaMBNet,
title={BaMBNet: A Blur-Aware Multi-Branch Network for Dual-Pixel Defocus Deblurring},
author={Pengwei Liang, Junjun Jiang, Xianming Liu, and Jiayi Ma},
journal={IEEE/CAA Journal of Automatica Sinica},
volume={},
number={},
pages={},
year={2022},
}
pytorch == 1.7.1
kornia == 0.4.1
opencv == 4.4.0
Please refer to the official repo at Defocus deblurring using dual-pixel data.
Note that the image list of small training dataset used in meta-learning can be found in Google Drive.
The deblurring images of DPDBlur dataset are available at Google Drive
-
Step 1: train COC network to estimate the blur amounts of DP data.
python blur_train.py -opt option/train/COC_Dataset_Train.yaml
-
Step 2: prepare the COC maps for deblurring training.
python blur_test.py -opt option/test/COC_Dataset_Test.yaml
-
Step 3: train the deblurred network.
python train.py -opt option/train/Deblur_Dataset_Trained.yaml
python test.py -opt option/test/Deblur_Dataset_Test.yaml
- Results of DPDD
- Results of Pixel5
- Results of dual_pixel_defocus_estimation_deblurring
This project is under the CC-BY-NC 4.0 license. See LICENSE for details.