Skip to content

keyonvafa/sequential-rationales

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Rationales for Sequential Predictions

Source code for the paper: Rationales for Sequential Predictions by Keyon Vafa, Yuntian Deng, David Blei, and Sasha Rush (EMNLP 2021).

Click here to watch our EMNLP talk.

Quick Start

Check out our Colab notebook, which generates a sequence with GPT-2 and performs greedy rationalization. Our compatible version of GPT-2 is available on Hugging Face.

The following code loads our compatible GPT-2 and rationalizes a sampled sequence:

from huggingface.rationalization import rationalize_lm
from transformers import AutoTokenizer, AutoModelWithLMHead

# Load model from Hugging Face
model = AutoModelWithLMHead.from_pretrained("keyonvafa/compatible-gpt2")
tokenizer = AutoTokenizer.from_pretrained("keyonvafa/compatible-gpt2")
model.cuda()
model.eval()

# Generate sequence
input_string = "The Supreme Court on Tuesday"
input_ids = tokenizer(input_string, return_tensors='pt')['input_ids'].to(model.device)
generated_input = model.generate(input_ids=input_ids, max_length=16, do_sample=False)[0]
  
# Rationalize sequence with greedy rationalization
rationales, rationalization_log = rationalize_lm(model, generated_input, tokenizer, verbose=True)

annotated_lambada.json is an annotated dataset based on Lambada, containing 107 passages and their annotated rationales. Each row has three keys:

  • lambadaIndex contains the corresponding (0-indexed) entry in Lambada.
  • text contains the text of the full passage.
  • rationale contains the human rationales for predicting the final word of the passage. rationale is a list: each entry is a tuple of indices. The first index in each tuple represents the start of an annotation. The second index in each tuple represents the end of the corresponding annotation. The length of the list for each example is the size of its rationale.

To load the dataset with Pandas, run:

import pandas as pd

df = pd.read_json('annotated_lambada.json', orient='records', lines=True)
# Print the rationale of the first example
text = df['text'].iloc[0]
rationale = df['rationale'].iloc[0]
print([text[sub_rationale[0]:sub_rationale[1]] for sub_rationale in rationale])

Sequential Rationalization Code

To rationalize your own sequence model, check out the instructions in the Custom Model section. To reproduce the experiments in our paper, jump ahead to Reproduce Experiments.

First, make sure all the required packages are installed:

Requirements and installation

Configure a virtual environment using Python 3.6+ (instructions here). Inside the virtual environment, use pip to install the required packages:

pip install -r requirements.txt

Configure Hugging Face to be developed locally

cd huggingface
pip install --editable ./
cd ..

Do the same with fairseq

cd fairseq
pip install --editable ./
cd ..

Optionally, install NVIDIA's apex library to enable faster training

cd fairseq
git clone https://github.com/NVIDIA/apex
pip install -v --no-cache-dir \
  --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
cd ../..

Follow the instructions below if you'd like to rationalize your own model. Jump ahead if you'd like to rationalize GPT-2 or a transformer-based machine translation model.

There are two steps: fine-tuning a model for compatibility, and then performing greedy rationalization. We currently support fine-tuning language models and conditional models in fairseq and fine-tuning GPT-2-based models in Hugging Face. Below, we'll walk through fine-tuning and rationalizing a language model using fairseq, but see IWSLT for a conditional model example in fairseq or GPT-2 for fine-tuning GPT-2 in Hugging Face.

Fine-tune for compatibility

First, you'll need to fine-tune your model for compatibility. Unless your model is trained with word-dropout, it is unable to form sensible predictions for incomplete inputs. For example, a pretrained language model may be able to fill in a blank when the sequence has no missing words, like I ate some ice cream because I was ____________, but it's not able to fill in the blank when other words in the sequence are missing, like I XXX some XXX cream because XXX was ____________. Since rationalization requires evaluating incomplete sequences, it's necessary to fine-tune for compatibility by using word dropout.

Make sure the model architecture is registered in fairseq/fairseq/models/transformer_lm.py. We'll use the name transformer_lm_custom. Also make sure the data is preprocessed under fairseq/data-bin/custom (check out Majority Class preprocessing for an example).

Fine-tune for compatibility using the command below. If you're fine-tuning a pretrained model for compatibility, define CHECKPOINT_DIR to be the directory containing the pretrained checkpoint (under checkpoint_last.pt). If you're training a model from scratch rather than fine-tuning, you may want to use a learning rate scheduler and warm up the learning rate.

CHECKPOINT_DIR=...
cd fairseq
fairseq-train --task language_modeling \
    data-bin/custom \
    --arch transformer_lm_custom \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --weight-decay 0.01 --clip-norm 0.0 \
    --lr 1e-5 --reset-optimizer --reset-dataloader \
    --tokens-per-sample 512 --sample-break-mode eos \
    --max-tokens 2048 --update-freq 1 \
    --no-epoch-checkpoints --fp16 \
    --save-dir $CHECKPOINT_DIR/custom \
    --tensorboard-logdir logs/custom \
    --word-dropout-mixture 0.5 --word-dropout-type uniform_length

The command above uses word dropout with probability 0.5. Each time word dropout is being performed, the number of words dropped out is uniformly sampled from 1 to the sequence length. The corresponding number of tokens are dropped out uniformly at random. For machine translation, we recommend setting --word-dropout-type inverse_length.

The max-tokens option depends on the size of your model and the capacity of your GPU. We recommend setting it to the maximum number that doesn't result in memory errors.

The number of training iterations depends on the dataset and model. We recommend following the training progress using TensorBoard:

tensorboard --logdir=logs --port=6006

Rationalize

Once you've fine-tuned your model for compatibility, you can perform greedy rationalization. The following code snippet provides a template for sampling from the fine-tuned model and performing greedy rationalization. You can execute this code from the fairseq directory.

import os
from fairseq.models.transformer import TransformerModel
from rationalization import rationalize_lm

# Define `checkpoint_dir` to be the directory containing the fine-tuned 
# model checkpoint.
checkpoint_dir = ...

# Load the model.
model = TransformerModel.from_pretrained(
    os.path.join(checkpoint_dir, "custom"),
    checkpoint_file="checkpoint_best.pt",
    data_name_or_path="data-bin/custom")
model.cuda()
model.eval()
model.model = model.models[0]

# Give the model a prefix for generation.
input_string = "The Supreme Court on Tuesday"
input_ids = model.task.dictionary.encode_line(input_string)
generated_sequence = model.generate(input_ids)[0]['tokens']
# NOTE: Depending on how Fairseq preprocessed the data, you may want to add the
# <eos> token to the beginning of `generated_sequence`.
rationales, log = rationalize_lm(model, generated_sequence, verbose=True)

The rest of this README provides instructions for reproducing all of the experiments from our paper. All of the commands below were run on a single GPU.

Majority Class

Majority Class is a synthetic language we simulated. We include the full dataset in fairseq/examples/language_model/majority_class.

cd fairseq
TEXT=examples/language_model/majority_class
fairseq-preprocess \
    --only-source \
    --trainpref $TEXT/train.tok \
    --validpref $TEXT/valid.tok \
    --testpref $TEXT/test.tok \
    --destdir data-bin/majority_class \
    --workers 20

Train standard model and evaluate heldout perplexity

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
fairseq-train --task language_modeling \
    data-bin/majority_class \
    --arch transformer_lm_majority_class \
    --optimizer adam --adam-betas '(0.9, 0.98)' --weight-decay 0.01 \
    --clip-norm 0.0 \
    --lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --warmup-init-lr 1e-07 \
    --tokens-per-sample 512 --sample-break-mode eos \
    --max-tokens 64000 --update-freq 1 \
    --max-update 20000 \
    --no-epoch-checkpoints \
    --save-dir $CHECKPOINT_DIR/standard_majority_class \
    --tensorboard-logdir majority_class_logs/standard_majority_class \
    --word-dropout-mixture 0. --fp16 

fairseq-eval-lm data-bin/majority_class \
    --path $CHECKPOINT_DIR/standard_majority_class/checkpoint_best.pt \
    --batch-size 1024 \
    --tokens-per-sample 20 \
    --context-window 0

This should report 1.80 as the test set perplexity.

Train compatible model

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
fairseq-train --task language_modeling \
    data-bin/majority_class \
    --arch transformer_lm_majority_class \
    --optimizer adam --adam-betas '(0.9, 0.98)' --weight-decay 0.01 \
    --clip-norm 0.0 \
    --lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --warmup-init-lr 1e-07 \
    --tokens-per-sample 512 --sample-break-mode eos \
    --max-tokens 64000 --update-freq 1 \
    --max-update 20000 \
    --no-epoch-checkpoints \
    --save-dir $CHECKPOINT_DIR/compatible_majority_class \
    --tensorboard-logdir majority_class_logs/compatible_majority_class \
    --word-dropout-mixture 1.0 --word-dropout-type uniform_length \
    --fp16 

fairseq-eval-lm data-bin/majority_class \
    --path $CHECKPOINT_DIR/compatible_majority_class/checkpoint_best.pt \
    --batch-size 1024 \
    --tokens-per-sample 20 \
    --context-window 0

This should also report 1.80 as the test set perplexity.

Plot compatibility

This command will produce Figure 3 from the paper.

cd ../analysis
python plot_majority_class_compatibility.py --checkpoint_dir $CHECKPOINT_DIR
cd ../fairseq

IWSLT14 is a machine translation dataset containing translations from German to English.

Download and preprocess the data

cd examples/translation/
bash prepare-iwslt14.sh
cd ../..

# Preprocess/binarize the data
TEXT=examples/translation/iwslt14.tokenized.de-en
fairseq-preprocess --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en \
    --workers 20

Train standard transformer model

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
fairseq-train \
    data-bin/iwslt14.tokenized.de-en \
    --arch transformer --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --dropout 0.3 --weight-decay 0.0001 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --encoder-ffn-embed-dim 1024 --decoder-ffn-embed-dim 1024 \
    --encoder-attention-heads 4 --decoder-attention-heads 4 \
    --max-tokens 4096 \
    --max-update 75000 \
    --eval-bleu \
    --eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
    --eval-bleu-detok moses \
    --eval-bleu-remove-bpe \
    --eval-bleu-print-samples \
    --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
    --tensorboard-logdir=iwslt_logs/standard_iwslt \
    --save-dir $CHECKPOINT_DIR/standard_iwslt \
    --no-epoch-checkpoints \
    --fp16 --word-dropout-mixture 0. 

Copy standard transformer to new compatible folder

When we're done pretraining the standard model, we can fine-tune for compatibility using word dropout. We first setup the checkpoint for the compatible model.

mkdir $CHECKPOINT_DIR/compatible_iwslt
cp $CHECKPOINT_DIR/standard_iwslt/checkpoint_best.pt $CHECKPOINT_DIR/compatible_iwslt/checkpoint_last.pt

Fine-tune compatible transformer model

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
fairseq-train \
    data-bin/iwslt14.tokenized.de-en \
    --arch transformer --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 1e-5 \
    --dropout 0.3 --weight-decay 0.0001 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --encoder-ffn-embed-dim 1024 --decoder-ffn-embed-dim 1024 \
    --encoder-attention-heads 4 --decoder-attention-heads 4 \
    --max-tokens 4096 \
    --max-update 410000 \
    --eval-bleu \
    --eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
    --eval-bleu-detok moses \
    --eval-bleu-remove-bpe \
    --eval-bleu-print-samples \
    --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
    --fp16 --reset-optimizer --reset-dataloader \
    --tensorboard-logdir=iwslt_logs/compatible_iwslt \
    --save-dir $CHECKPOINT_DIR/compatible_iwslt \
    --word-dropout-mixture 0.5  --word-dropout-type inverse_length \
    --no-epoch-checkpoints

Evaluate BLEU

Standard:

fairseq-generate data-bin/iwslt14.tokenized.de-en \
    --path $CHECKPOINT_DIR/standard_iwslt/checkpoint_best.pt \
    --batch-size 128 --beam 5 --remove-bpe

This should report 34.76

Compatible:

fairseq-generate data-bin/iwslt14.tokenized.de-en \
    --path $CHECKPOINT_DIR/compatible_iwslt/checkpoint_best.pt \
    --batch-size 128 --beam 5 --remove-bpe

This should report 34.78.

Generate translations for distractor experiment

The experiment with distractor sentences is described in the first paragraph of Section 8.2 in our paper. The experiment involves generating translations from the test set and concatenating random examples.

mkdir generated_translations
fairseq-generate data-bin/iwslt14.tokenized.de-en \
  --path $CHECKPOINT_DIR/compatible_iwslt/checkpoint_best.pt \
  --batch-size 128 \
  --beam 1  > generated_translations/compatible_iwslt_tmp.txt
grep 'H-' \
  generated_translations/compatible_iwslt_tmp.txt \
  | sed 's/^..//' | sort -n | \
  cut -f3 > generated_translations/compatible_iwslt.txt

Randomly concatenate generated sentences and binarize

cd ../analysis
python create_distractor_iwslt_dataset.py
cd ../fairseq
TEXT=examples/translation/iwslt14.tokenized.de-en
fairseq-preprocess --source-lang de --target-lang en \
    --trainpref $TEXT/train  \
    --validpref $TEXT/valid \
    --testpref generated_translations/distractors \
    --destdir data-bin/iwslt14_distractors.tokenized.de-en \
    --workers 20

Perform greedy rationalization for distractor dataset

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method greedy

Perform baseline rationalization for distractor dataset

python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method gradient_norm
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method signed_gradient
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method integrated_gradient
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method last_attention
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task distractors  --method all_attention

Evaluate distractors

Run this set of commands to reproduce Table 3 from the paper.

cd ../analysis
python evaluate_distractor_rationales.py --baseline gradient_norm
python evaluate_distractor_rationales.py --baseline signed_gradient
python evaluate_distractor_rationales.py --baseline integrated_gradient
python evaluate_distractor_rationales.py --baseline last_attention
python evaluate_distractor_rationales.py --baseline all_attention
cd ../fairseq

The results should look like:

Method Source Mean Target Mean Source Frac. Target Frac.
Gradient norms 0.40 0.44 0.06 0.06
Grad x emb 6.25 5.57 0.42 0.41
Integrated grads 2.08 1.68 0.23 0.14
Last attention 0.63 2.41 0.09 0.24
All attentions 0.58 0.80 0.08 0.12
Greedy 0.12 0.12 0.09 0.02

Download and preprocess alignments

The other translation experiment involves word alignments. It is described in more detail in Section 8.2 of the paper.

First, agree to the license and download the gold alignments from RWTH Aachen. Put the files en, de, and alignmentDeEn in the directory fairseq/examples/translation/iwslt14.tokenized.de-en/gold_labels, and, in that same repo, convert to Unicode using

iconv -f ISO_8859-1 -t UTF8 de > gold.de
iconv -f ISO_8859-1 -t UTF8 en > gold.en

Clean and tokenize the text

cd ../..
cat iwslt14.tokenized.de-en/gold_labels/gold.en | \
  perl mosesdecoder/scripts/tokenizer/tokenizer.perl -threads 8 -l en | \
  perl mosesdecoder/scripts/tokenizer/lowercase.perl > iwslt14.tokenized.de-en/gold_labels/tmp_gold.en
cat iwslt14.tokenized.de-en/gold_labels/gold.de | \
  perl mosesdecoder/scripts/tokenizer/tokenizer.perl -threads 8 -l de | \
  perl mosesdecoder/scripts/tokenizer/lowercase.perl > iwslt14.tokenized.de-en/gold_labels/tmp_gold.de
cd ../..

Apply BPE

python subword-nmt/subword_nmt/apply_bpe.py -c iwslt14.tokenized.de-en/code < iwslt14.tokenized.de-en/gold_labels/tmp_gold.en > iwslt14.tokenized.de-en/gold_labels/gold_bpe.en 
python subword-nmt/subword_nmt/apply_bpe.py -c iwslt14.tokenized.de-en/code < iwslt14.tokenized.de-en/gold_labels/tmp_gold.de > iwslt14.tokenized.de-en/gold_labels/gold_bpe.de

Since the original file automatically tokenizes the apostrophes (e.g. don ' t) after BPE, sometimes there are incorrect spaces in the tokenization (e.g. don &apos; t instead of don &apos;t). Since this would change the alignments for these files, you may need to go through the files gold_bpe.en and gold_bpe.de and change them manually. Keep the spaces for apostrophes but not for plurals, e.g. man &apos;s office and &apos; legal drugs &apos; are both correct. Delete the new lines at the bottom of gold.en, gold.de, gold_bpe.en, and gold_bpe.de. The only other necessary change is changing Ă @@ -@@ to a-@@ on line 247 since we don't tokenize accents.

If you've agreed to the license and would like to skip these steps, email me at [email protected] and I can provide you the preprocessed files.

Binarize gold alignments

TEXT=examples/translation/iwslt14.tokenized.de-en
fairseq-preprocess --source-lang de --target-lang en \
    --trainpref $TEXT/train  \
    --validpref $TEXT/valid \
    --testpref $TEXT/gold_labels/gold_bpe \
    --destdir data-bin/iwslt14_alignments.tokenized.de-en \
    --workers 20

Create mapping between alignments with/without BPE

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

CHECKPOINT_DIR=...
cd ../analysis
python map_alignments_to_bpe.py --checkpoint_dir $CHECKPOINT_DIR
cd ../fairseq

Perform greedy rationalization for alignments dataset

python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method greedy
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method greedy  --top_1

Perform baseline rationalization for alignments dataset

python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method gradient_norm
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method gradient_norm  --top_1
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method signed_gradient
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method signed_gradient  --top_1
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method integrated_gradient
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method integrated_gradient  --top_1
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method last_attention
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method last_attention  --top_1
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method all_attention
python rationalize_iwslt.py --checkpoint_dir $CHECKPOINT_DIR \
    --task alignments  --method all_attention  --top_1

Evaluate alignments

These commands will reproduce Table 4 in the paper.

cd ../analysis
python evaluate_alignment_rationales.py --baseline gradient_norm 
python evaluate_alignment_rationales.py --baseline gradient_norm  --top_1
python evaluate_alignment_rationales.py --baseline signed_gradient 
python evaluate_alignment_rationales.py --baseline signed_gradient  --top_1
python evaluate_alignment_rationales.py --baseline integrated_gradient 
python evaluate_alignment_rationales.py --baseline integrated_gradient  --top_1
python evaluate_alignment_rationales.py --baseline last_attention 
python evaluate_alignment_rationales.py --baseline last_attention  --top_1
python evaluate_alignment_rationales.py --baseline all_attention 
python evaluate_alignment_rationales.py --baseline all_attention  --top_1
cd ../fairseq

The results should look like:

Method Length AER IOU F1 Top1
Gradient norms 10.2 0.82 0.30 0.16 0.63
Grad x emb 13.2 0.90 0.16 0.12 0.40
Integrated grads 11.3 0.85 0.24 0.14 0.42
Last attention 10.8 0.84 0.27 0.15 0.59
All attentions 10.7 0.82 0.32 0.15 0.66
Greedy 4.9 0.78 0.40 0.24 0.64

Plot greedy rationalization example

This will reproduce Figure 6 from the paper.

python plot_iwslt_rationalization.py
cd ..

In the paper, we performed experiments for fine-tuning GPT-2 Large (using sequence lengths of 1024). Since practitioners may not have a GPU that has the memory capacity to train the large model, our replication instructions are for GPT-2 Medium, fine-tuning with a sequence length of 512. This can be done on a single 12GB GPU, and the rationalization performance is similar for both models. If you would like to specifically replicate our results for GPT-2 Large, email me at [email protected] and I can provide you with the fine-tuning instructions/the full fine-tuned model.

Download Open-Webtext

First go to the OpenWebTextCorpus, a WebText replication corpus provided by Aaron Gokaslan and Vanya Cohen. We only use a single split to train (we used urlsf_subset09.tar). Expand all the items and merge the first 998, taking only the first 8 million lines. This will be the training set. We used half of the remaining files as the validation set, and the other half as the test set. Store the files as webtext_train.txt, webtext_valid.txt, and webtext_test.txt in huggingface/data.

Alternatively, you can email me at [email protected] and I can send you the raw files (they're a little too large to store on Github).

Fine-tune GPT-2 for compatibility using word dropout

Make sure to replace CHECKPOINT_DIR with the directory you're using to store model checkpoints.

cd huggingface
CHECKPOINT_DIR=...
python examples/pytorch/language-modeling/run_clm.py \
    --model_name_or_path gpt2-medium \
    --do_train \
    --do_eval \
    --train_file data/webtext_train.txt \
    --validation_file data/webtext_valid.txt \
    --logging_dir gpt2_logs/compatible_gpt2 \
    --output_dir $CHECKPOINT_DIR/compatible_gpt2 \
    --per_device_train_batch_size 1 \
    --evaluation_strategy steps --eval_steps 500 \
    --num_train_epochs 50 \
    --lr_scheduler_type constant \
    --learning_rate 0.00001 \
    --block_size 512 \
    --per_device_eval_batch_size 4 \
    --save_total_limit 2 \
    --max_steps 45000 \
    --word_dropout_mixture 0.5

Get heldout perplexity

For the compatible model:

python examples/pytorch/language-modeling/run_clm.py \
    --model_name_or_path $CHECKPOINT_DIR/compatible_gpt2 \
    --output_dir gpt2_test_output/compatible/ \
    --do_eval \
    --validation_file data/webtext_test.txt \
    --block_size 512 \
    --per_device_eval_batch_size 4

This should give a heldout perplexity of 17.6086.

For the pretrained model:

python examples/pytorch/language-modeling/run_clm.py \
    --model_name_or_path gpt2-medium \
    --output_dir gpt2_test_output/pretrained/ \
    --do_eval \
    --validation_file data/webtext_test.txt \
    --block_size 512 \
    --per_device_eval_batch_size 4

This should give a heldout perplexity of 19.9674.

Plot "the" repeats to check compatibility

This will reproduce Figure 4 of the paper.

cd ../analysis
python plot_gpt2_the_repeats.py  --checkpoint_dir $CHECKPOINT_DIR
cd ../huggingface

Plot page 1 figure

This will reproduce Figure 1 of the paper. Alternatively, you can use our Colab notebook to reproduce Figure 1.

python plot_gpt2_rationalization.py  --checkpoint_dir $CHECKPOINT_DIR

Greedy rationalize analogies

For the analogies experiment, we use the analogies dataset provided by Mikolev et al. The dataset is already included in our Github, so there is no need to download anything else.

python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method greedy 

Greedy rationalize baselines (along with exhaustive search)

python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method gradient_norm
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method signed_gradient
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method integrated_gradient
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method attention_rollout
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method all_attention
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method last_attention
python rationalize_analogies.py  --checkpoint_dir $CHECKPOINT_DIR  \
    --method exhaustive

Evaluate rationales for analogies experiment

cd ../analysis
python evaluate_analogies_rationales.py --baseline gradient_norm
python evaluate_analogies_rationales.py --baseline signed_gradient
python evaluate_analogies_rationales.py --baseline integrated_gradient
python evaluate_analogies_rationales.py --baseline attention_rollout
python evaluate_analogies_rationales.py --baseline last_attention
python evaluate_analogies_rationales.py --baseline all_attention
cd ../huggingface

This should produce the following results:

Method Length Ratio Ante No D
Gradient norms 14.9 2.7 1.00 0.22
Grad x emb 33.1 6.0 0.99 0.10
Integrated grads 31.9 6.0 0.99 0.04
Attention rollout 37.6 7.0 1.00 0.04
Last attention 14.9 2.7 1.00 0.31
All attentions 11.2 2.3 0.99 0.32
Greedy 7.8 1.1 1.00 0.63

Since these results are for GPT-2 Medium rather than GPT-2 Large, the results in Table 1 of the paper are a little different.

Get wall-clock time comparisons

python compare_rationalization_times.py  --checkpoint_dir $CHECKPOINT_DIR

Greedily rationalize Lambada

For the final experiment, we collected an annotated version of the Lambada dataset. See more details about using the dataset above.

python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method greedy 

Rationalize Lambada baselines

python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method gradient_norm
python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method signed_gradient
python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method integrated_gradient
python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method attention_rollout
python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method last_attention
python rationalize_annotated_lambada.py --checkpoint_dir $CHECKPOINT_DIR \
    --method all_attention 

Evaluate rationales for Lambada

cd ../analysis
python evaluate_lambada_rationales.py --baseline gradient_norm
python evaluate_lambada_rationales.py --baseline signed_gradient
python evaluate_lambada_rationales.py --baseline integrated_gradient
python evaluate_lambada_rationales.py --baseline attention_rollout
python evaluate_lambada_rationales.py --baseline last_attention
python evaluate_lambada_rationales.py --baseline all_attention
cd ../huggingface

This should produce the following results:

Method Length IOU F1
Gradient norms 53.4 0.17 0.25
Grad x emb 66.6 0.13 0.21
Integrated grads 67.0 0.12 0.21
Attention rollout 72.6 0.10 0.18
Last attention 53.0 0.16 0.25
All attentions 51.3 0.19 0.26
Greedy 18.9 0.25 0.34

Since these results are for GPT-2 Medium rather than GPT-2 Large, the results in Table 2 of the paper are a little different.

Bibtex Citation

@inproceedings{vafa2021rationales,
  title={Rationales for Sequential Predictions},
  author={Vafa, Keyon and Deng, Yuntian and Blei, David M and Rush, Alexander M},
  booktitle={Empirical Methods in Natural Language Processing},
  year={2021}
}

About

Rationales for Sequential Predictions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published