Skip to content

Commit

Permalink
apacheGH-44072: [C++][Parquet] Add Float16 reading benchmarks (apache…
Browse files Browse the repository at this point in the history
…#44073)

Local benchmark numbers:
```
---------------------------------------------------------------------------------------------------------------------------
Benchmark                                                                 Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------------------------------
BM_ReadColumnPlain<false,Int32Type>/null_probability:-1            20038480 ns     20019703 ns           36 bytes_per_second=1.9512Gi/s items_per_second=523.772M/s
BM_ReadColumnPlain<true,Int32Type>/null_probability:0              37114403 ns     36766588 ns           19 bytes_per_second=1.06245Gi/s items_per_second=285.198M/s
BM_ReadColumnPlain<true,Int32Type>/null_probability:1              44589582 ns     44371707 ns           16 bytes_per_second=901.475Mi/s items_per_second=236.316M/s
BM_ReadColumnPlain<true,Int32Type>/null_probability:50             65624754 ns     65322683 ns           11 bytes_per_second=612.345Mi/s items_per_second=160.522M/s
BM_ReadColumnPlain<true,Int32Type>/null_probability:99             43072631 ns     42932582 ns           16 bytes_per_second=931.693Mi/s items_per_second=244.238M/s
BM_ReadColumnPlain<true,Int32Type>/null_probability:100            36710045 ns     36475141 ns           19 bytes_per_second=1.07093Gi/s items_per_second=287.477M/s

BM_ReadColumnPlain<false,Float16LogicalType>/null_probability:-1   52718868 ns     52616204 ns           12 bytes_per_second=380.111Mi/s items_per_second=199.288M/s
BM_ReadColumnPlain<true,Float16LogicalType>/null_probability:0     71273144 ns     71093105 ns           10 bytes_per_second=281.321Mi/s items_per_second=147.493M/s
BM_ReadColumnPlain<true,Float16LogicalType>/null_probability:1     80674727 ns     80358048 ns            8 bytes_per_second=248.886Mi/s items_per_second=130.488M/s
BM_ReadColumnPlain<true,Float16LogicalType>/null_probability:50   138249159 ns    137922632 ns            5 bytes_per_second=145.009Mi/s items_per_second=76.0264M/s
BM_ReadColumnPlain<true,Float16LogicalType>/null_probability:99    86938382 ns     86576176 ns            8 bytes_per_second=231.01Mi/s items_per_second=121.116M/s
BM_ReadColumnPlain<true,Float16LogicalType>/null_probability:100   74154244 ns     73984356 ns            9 bytes_per_second=270.327Mi/s items_per_second=141.729M/s
```

* GitHub Issue: apache#44072

Authored-by: Antoine Pitrou <[email protected]>
Signed-off-by: Antoine Pitrou <[email protected]>
  • Loading branch information
pitrou authored and khwilson committed Sep 14, 2024
1 parent 0f9ed84 commit 002b301
Showing 1 changed file with 75 additions and 11 deletions.
86 changes: 75 additions & 11 deletions cpp/src/parquet/arrow/reader_writer_benchmark.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
#include "parquet/file_reader.h"
#include "parquet/file_writer.h"
#include "parquet/platform.h"
#include "parquet/properties.h"

#include "arrow/array.h"
#include "arrow/array/builder_primitive.h"
Expand Down Expand Up @@ -88,6 +89,11 @@ struct benchmark_traits<BooleanType> {
using arrow_type = ::arrow::BooleanType;
};

template <>
struct benchmark_traits<Float16LogicalType> {
using arrow_type = ::arrow::HalfFloatType;
};

template <typename ParquetType>
using ArrowType = typename benchmark_traits<ParquetType>::arrow_type;

Expand Down Expand Up @@ -125,15 +131,15 @@ std::vector<T> RandomVector(int64_t true_percentage, int64_t vector_size,
return values;
}

template <typename ParquetType>
template <typename ParquetType, typename ArrowType = ArrowType<ParquetType>>
std::shared_ptr<::arrow::Table> TableFromVector(
const std::vector<typename ParquetType::c_type>& vec, bool nullable,
const std::vector<typename ArrowType::c_type>& vec, bool nullable,
int64_t null_percentage = kAlternatingOrNa) {
if (!nullable) {
ARROW_CHECK_EQ(null_percentage, kAlternatingOrNa);
}
std::shared_ptr<::arrow::DataType> type = std::make_shared<ArrowType<ParquetType>>();
NumericBuilder<ArrowType<ParquetType>> builder;
std::shared_ptr<::arrow::DataType> type = std::make_shared<ArrowType>();
NumericBuilder<ArrowType> builder;
if (nullable) {
// Note true values select index 1 of sample_values
auto valid_bytes = RandomVector<uint8_t>(/*true_percentage=*/null_percentage,
Expand Down Expand Up @@ -258,18 +264,20 @@ struct Examples<bool> {
};

static void BenchmarkReadTable(::benchmark::State& state, const ::arrow::Table& table,
std::shared_ptr<WriterProperties> properties,
int64_t num_values = -1, int64_t total_bytes = -1) {
auto output = CreateOutputStream();
EXIT_NOT_OK(
WriteTable(table, ::arrow::default_memory_pool(), output, table.num_rows()));
EXIT_NOT_OK(WriteTable(table, ::arrow::default_memory_pool(), output,
/*chunk_size=*/table.num_rows(), properties));
PARQUET_ASSIGN_OR_THROW(auto buffer, output->Finish());

while (state.KeepRunning()) {
for (auto _ : state) {
auto reader =
ParquetFileReader::Open(std::make_shared<::arrow::io::BufferReader>(buffer));
std::unique_ptr<FileReader> arrow_reader;
EXIT_NOT_OK(FileReader::Make(::arrow::default_memory_pool(), std::move(reader),
&arrow_reader));

std::shared_ptr<::arrow::Table> table;
EXIT_NOT_OK(arrow_reader->ReadTable(&table));
}
Expand All @@ -283,8 +291,14 @@ static void BenchmarkReadTable(::benchmark::State& state, const ::arrow::Table&
}
}

static void BenchmarkReadTable(::benchmark::State& state, const ::arrow::Table& table,
int64_t num_values = -1, int64_t total_bytes = -1) {
BenchmarkReadTable(state, table, default_writer_properties(), num_values, total_bytes);
}

static void BenchmarkReadArray(::benchmark::State& state,
const std::shared_ptr<Array>& array, bool nullable,
std::shared_ptr<WriterProperties> properties,
int64_t num_values = -1, int64_t total_bytes = -1) {
auto schema = ::arrow::schema({field("s", array->type(), nullable)});
auto table = ::arrow::Table::Make(schema, {array}, array->length());
Expand All @@ -294,8 +308,15 @@ static void BenchmarkReadArray(::benchmark::State& state,
BenchmarkReadTable(state, *table, num_values, total_bytes);
}

static void BenchmarkReadArray(::benchmark::State& state,
const std::shared_ptr<Array>& array, bool nullable,
int64_t num_values = -1, int64_t total_bytes = -1) {
BenchmarkReadArray(state, array, nullable, default_writer_properties(), num_values,
total_bytes);
}

//
// Benchmark reading a primitive column
// Benchmark reading a dict-encoded primitive column
//

template <bool nullable, typename ParquetType>
Expand All @@ -308,23 +329,27 @@ static void BM_ReadColumn(::benchmark::State& state) {
std::shared_ptr<::arrow::Table> table =
TableFromVector<ParquetType>(values, nullable, state.range(0));

BenchmarkReadTable(state, *table, table->num_rows(),
auto properties = WriterProperties::Builder().disable_dictionary()->build();

BenchmarkReadTable(state, *table, properties, table->num_rows(),
sizeof(typename ParquetType::c_type) * table->num_rows());
}

// There are two parameters here that cover different data distributions.
// null_percentage governs distribution and therefore runs of null values.
// first_value_percentage governs distribution of values (we select from 1 of 2)
// so when 0 or 100 RLE is triggered all the time. When a value in the range (0, 100)
// there will be some percentage of RLE encoded values and some percentage of literal
// encoded values (RLE is much less likely with percentages close to 50).
// there will be some percentage of RLE-encoded dictionary indices and some
// percentage of literal encoded dictionary indices
// (RLE is much less likely with percentages close to 50).
BENCHMARK_TEMPLATE2(BM_ReadColumn, false, Int32Type)
->Args({/*null_percentage=*/kAlternatingOrNa, 1})
->Args({/*null_percentage=*/kAlternatingOrNa, 10})
->Args({/*null_percentage=*/kAlternatingOrNa, 50});

BENCHMARK_TEMPLATE2(BM_ReadColumn, true, Int32Type)
->Args({/*null_percentage=*/kAlternatingOrNa, /*first_value_percentage=*/0})
->Args({/*null_percentage=*/0, /*first_value_percentage=*/1})
->Args({/*null_percentage=*/1, /*first_value_percentage=*/1})
->Args({/*null_percentage=*/10, /*first_value_percentage=*/10})
->Args({/*null_percentage=*/25, /*first_value_percentage=*/5})
Expand Down Expand Up @@ -369,6 +394,45 @@ BENCHMARK_TEMPLATE2(BM_ReadColumn, true, BooleanType)
->Args({kAlternatingOrNa, 1})
->Args({5, 10});

//
// Benchmark reading a PLAIN-encoded primitive column
//

template <bool nullable, typename ParquetType>
static void BM_ReadColumnPlain(::benchmark::State& state) {
using c_type = typename ArrowType<ParquetType>::c_type;

const std::vector<c_type> values(BENCHMARK_SIZE, static_cast<c_type>(42));
std::shared_ptr<::arrow::Table> table =
TableFromVector<ParquetType>(values, /*nullable=*/nullable, state.range(0));

auto properties = WriterProperties::Builder().disable_dictionary()->build();
BenchmarkReadTable(state, *table, properties, table->num_rows(),
sizeof(c_type) * table->num_rows());
}

BENCHMARK_TEMPLATE2(BM_ReadColumnPlain, false, Int32Type)
->ArgNames({"null_probability"})
->Args({kAlternatingOrNa});
BENCHMARK_TEMPLATE2(BM_ReadColumnPlain, true, Int32Type)
->ArgNames({"null_probability"})
->Args({0})
->Args({1})
->Args({50})
->Args({99})
->Args({100});

BENCHMARK_TEMPLATE2(BM_ReadColumnPlain, false, Float16LogicalType)
->ArgNames({"null_probability"})
->Args({kAlternatingOrNa});
BENCHMARK_TEMPLATE2(BM_ReadColumnPlain, true, Float16LogicalType)
->ArgNames({"null_probability"})
->Args({0})
->Args({1})
->Args({50})
->Args({99})
->Args({100});

//
// Benchmark reading binary column
//
Expand Down

0 comments on commit 002b301

Please sign in to comment.