Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: make pybind_align to fit c++ interface and add numpy style doc in it #47

Merged
merged 1 commit into from
May 4, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 98 additions & 14 deletions src/python/align.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ void define_align(py::module& m) {
const std::string& registration_type,
double voxel_resolution,
double downsampling_resolution,
double max_corresponding_distance,
double max_correspondence_distance,
int num_threads) {
if (target_points.cols() != 3 && target_points.cols() != 4) {
std::cerr << "target_points must be Nx3 or Nx4" << std::endl;
Expand All @@ -57,7 +57,7 @@ void define_align(py::module& m) {

setting.voxel_resolution = voxel_resolution;
setting.downsampling_resolution = downsampling_resolution;
setting.max_correspondence_distance = max_corresponding_distance;
setting.max_correspondence_distance = max_correspondence_distance;
setting.num_threads = num_threads;

std::vector<Eigen::Vector4d> target(target_points.rows());
Expand Down Expand Up @@ -90,8 +90,35 @@ void define_align(py::module& m) {
py::arg("registration_type") = "GICP",
py::arg("voxel_resolution") = 1.0,
py::arg("downsampling_resolution") = 0.25,
py::arg("max_corresponding_distance") = 1.0,
py::arg("num_threads") = 1);
py::arg("max_correspondence_distance") = 1.0,
py::arg("num_threads") = 1,
R"pbdoc(
Align two point clouds using various ICP-like algorithms.

Parameters
----------
target_points : NDArray[np.float64]
Nx3 or Nx4 matrix representing the target point cloud.
source_points : NDArray[np.float64]
Nx3 or Nx4 matrix representing the source point cloud.
init_T_target_source : np.ndarray[np.float64]
4x4 matrix representing the initial transformation from target to source.
registration_type : str = 'GICP'
Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP', 'VGICP').
voxel_resolution : float = 1.0
Resolution of voxels used for downsampling.
downsampling_resolution : float = 0.25
Resolution for downsampling the point clouds.
max_correspondence_distance : float = 1.0
Maximum distance for matching points between point clouds.
num_threads : int = 1
Number of threads to use for parallel processing.

Returns
-------
RegistrationResult
Object containing the final transformation matrix and convergence status.
)pbdoc");

// align
m.def(
Expand All @@ -101,26 +128,60 @@ void define_align(py::module& m) {
const PointCloud::ConstPtr& source,
KdTree<PointCloud>::ConstPtr target_tree,
const Eigen::Matrix4d& init_T_target_source,
const std::string& registration_type,
double max_correspondence_distance,
int num_threads,
int max_iterations) {
Registration<GICPFactor, ParallelReductionOMP> registration;
registration.rejector.max_dist_sq = max_correspondence_distance * max_correspondence_distance;
registration.reduction.num_threads = num_threads;
registration.optimizer.max_iterations = max_iterations;
int num_threads) {
RegistrationSetting setting;
if (registration_type == "ICP") {
setting.type = RegistrationSetting::ICP;
} else if (registration_type == "PLANE_ICP") {
setting.type = RegistrationSetting::PLANE_ICP;
} else if (registration_type == "GICP") {
setting.type = RegistrationSetting::GICP;
} else {
std::cerr << "invalid registration type:" << registration_type << std::endl;
return RegistrationResult(Eigen::Isometry3d::Identity());
}
setting.max_correspondence_distance = max_correspondence_distance;
setting.num_threads = num_threads;

if (target_tree == nullptr) {
target_tree = std::make_shared<KdTree<PointCloud>>(target, KdTreeBuilderOMP(num_threads));
}
return registration.align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source));
return align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source), setting);
},
py::arg("target"),
py::arg("source"),
py::arg("target_tree") = nullptr,
py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(),
py::arg("registration_type") = "GICP",
py::arg("max_correspondence_distance") = 1.0,
py::arg("num_threads") = 1,
py::arg("max_iterations") = 20);
R"pbdoc(
Align two point clouds using specified ICP-like algorithms, utilizing point cloud and KD-tree inputs.

Parameters
----------
target : PointCloud::ConstPtr
Pointer to the target point cloud.
source : PointCloud::ConstPtr
Pointer to the source point cloud.
target_tree : KdTree<PointCloud>::ConstPtr, optional
Pointer to the KD-tree of the target for nearest neighbor search. If nullptr, a new tree is built.
init_T_target_source : NDArray[np.float64]
4x4 matrix representing the initial transformation from target to source.
registration_type : str = 'GICP'
Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP').
max_corresponding_distance : float = 1.0
Maximum distance for corresponding point pairs.
num_threads : int = 1
Number of threads to use for computation.

Returns
-------
RegistrationResult
Object containing the final transformation matrix and convergence status.
)pbdoc");

// align
m.def(
Expand All @@ -144,5 +205,28 @@ void define_align(py::module& m) {
py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(),
py::arg("max_correspondence_distance") = 1.0,
py::arg("num_threads") = 1,
py::arg("max_iterations") = 20);
}
py::arg("max_iterations") = 20,
R"pbdoc(
Align two point clouds using voxel-based GICP algorithm, utilizing a Gaussian Voxel Map.

Parameters
----------
target_voxelmap : GaussianVoxelMap
Voxel map constructed from the target point cloud.
source : PointCloud
Source point cloud to align to the target.
init_T_target_source : NDArray[np.float64]
4x4 matrix representing the initial transformation from target to source.
max_correspondence_distance : float = 1.0
Maximum distance for corresponding point pairs.
num_threads : int = 1
Number of threads to use for computation.
max_iterations : int = 20
Maximum number of iterations for the optimization algorithm.

Returns
-------
RegistrationResult
Object containing the final transformation matrix and convergence status.
)pbdoc");
}
Loading