Improving pedestrian heading estimation with Virtual Multi-View Synthesis (VMVS)
If you find this code useful, please consider citing:
@article{ku2019vmvs,
title={Improving 3d Object Detection for Pedestrians with Virtual Multi-View Synthesis Orientation Estimation},
author={Ku, Jason and Pon, Alex D and Walsh, Sean and Waslander, Steven L},
journal={IROS},
year={2019}
}
- Download the KITTI 3D Object Detection Dataset
- Go to scene_vis and generate dense depth maps
scene_vis/scripts/depth_completion/save_depth_maps_obj.py
- Clone this repo
git clone [email protected]:kujason/vmvs.git
pip install -r requirements
save_crops_roi.py
- Saves ROI crops of all pedestrians in the dataset (for comparison)save_crops_vmvs.py
- Saves images from virtual views of all pedestrians in the datasetbash save_crops_vmvs_multiproc.sh
- Runs multiple processes to save imagesshow_crops_grid.py
- Shows virtual views of pedestrians in a grid using multiple renderers (faster thansave_crops_vmvs.py
)