BasepairModels is a python package with a CLI to train and interpret base-resolution deep neural networks trained on functional genomics data such as ChIP-nexus or ChIP-seq.
Download and install the latest version of Miniconda for your platform. Here is the link for the installers - Miniconda Installers
Create a new virtual environment and activate it as shown below
conda create --name basepairmodels python=3.7
conda activate basepairmodels
pip install git+https://github.com/kundajelab/basepairmodels.git
For this tutorial we'll use experimental CHIP-seq data, for the transcription factor CTCF obtained for the K562 cell line, which is available on the ENCODE data portal. There are 5 such experiments that we find in ENCODE, you can see them listed here CHIP-seq CTCF K562 . We'll restrict ourselves to one experiment ENCSR000EGM
Download the .bam files for the two replicates shown below in the image.
The two replicates are isogenic replicates (biological). A more detailed explanation of the various types of replicates can be found here.
Links to the replicate bam files provided below.
wget https://www.encodeproject.org/files/ENCFF198CVB/@@download/ENCFF198CVB.bam -O rep1.bam
wget https://www.encodeproject.org/files/ENCFF488CXC/@@download/ENCFF488CXC.bam -O rep2.bam
Now download the control for the experiment, which is available here ENCSR000EHI
Download the bam file shown in the image below.
Link provided below
wget https://www.encodeproject.org/files/ENCFF023NGN/@@download/ENCFF023NGN.bam -O control.bam
For the following steps you will need samtools
bamtools
and bedGraphToBigWig
, which are not
installed as part of this repository.
Here are some links to help install those tools.
bedGraphToBigWig (Linux 64-bit)
bedGraphToBigWig (Mac OSX 10.14.6)
samtools merge -f merged.bam rep1.bam rep2.bam
samtools index merged.bam
Experiment
# get coverage of 5’ positions of the plus strand
bedtools genomecov -5 -bg -strand + \
-g hg38.chrom.sizes -ibam merged.bam \
| sort -k1,1 -k2,2n > plus.bedGraph
# get coverage of 5’ positions of the minus strand
bedtools genomecov -5 -bg -strand - \
-g hg38.chrom.sizes -ibam merged.bam \
| sort -k1,1 -k2,2n > minus.bedGraph
# Convert bedGraph files to bigWig files
bedGraphToBigWig plus.bedGraph hg38.chrom.sizes plus.bw
bedGraphToBigWig minus.bedGraph hg38.chrom.sizes minus.bw
Control
# get coverage of 5’ positions of the plus strand
bedtools genomecov -5 -bg -strand + \
-g hg38.chrom.sizes -ibam control.bam \
| sort -k1,1 -k2,2n > control_plus.bedGraph
bedtools genomecov -5 -bg -strand - \
-g hg38.chrom.sizes -ibam control.bam \
| sort -k1,1 -k2,2n > control_minus.bedGraph
# Convert bedGraph files to bigWig files
bedGraphToBigWig control_plus.bedGraph hg38.chrom.sizes control_plus.bw
bedGraphToBigWig control_minus.bedGraph hg38.chrom.sizes control_minus.bw
For the purposes of this tutorial we will use the optimal IDR thresholded peaks that are already available in the ENCODE data portal. We will use the the narrowPeak files that are in BED6+4 format. Explanation of what each of the 10 fields means can be found here. Currently, only this format is supported but in the future support for more formats will be added.
See image below that shows the file listed in the ENCODE data portal
Link to download the file ENCFF396BZQ
We suggest creating a directory structure to store the data, models, predictions, metrics, importance scores, discovered motifs, plots & visualizations etc. that will make it easier for you to organize and maintain your work. Let's start by creating a parent directory for the experiment and moving the bigwig files and peaks file from section 1.1 & 1.2 to a data directory
mkdir ENCSR000EGM
mkdir ENCSR000EGM/data
mv *.bw ENCSR000EGM/data
mv peaks.bed ENCSR000EGM/data
Once this is done, your directory heirarchy should resemble this
For the sake of this tutorial let's assume we have a reference
directory at the same level as the ENCSR000EGM
experiment directory. In the reference
directory we will place 4 files the hg38 fasta file, the index to the fasta file, chromosome sizes file and one text file that contains a list of chromosomes we care about (one per line - chr1-22, X, Y, M and exclude the rest). The directory structure looks like this.
Before we start training, we need to compile a json file that contains information about the input data. Here is a sample json file that shows how to specify the input data information for the data we organized in Section 1.3. The data is organized into tasks and tracks. In this example we have one task and two tracks, the plus and the minus strand. Each track has 4 required keys signal
, loci
, background_loci
, & bias
.
{
"0": {
"signal": {
"source": ["/users/john/ENCSR000EGM/data/plus.bw",
"/users/john/ENCSR000EGM/data/minus.bw"]
},
"loci": {
"source": ["/users/john/ENCSR000EGM/data/peaks.bed"]
},
"background_loci": {
"source": [],
"ratio": []
},
"bias": {
"source": ["/users/john/ENCSR000EGM/data/control_plus.bw",
"/users/john/ENCSR000EGM/data/control_minus.bw"],
"smoothing": [null, null]
}
}
}
We'll call the above json file input_data.json
. Additionally we need a json
file to specify parameters for the BPNet architecture. Let's call this json file
bpnet_params.json
{
"input_len": 2114,
"output_profile_len": 1000,
"motif_module_params": {
"filters": [64],
"kernel_sizes": [21],
"padding": "valid"
},
"syntax_module_params": {
"num_dilation_layers": 8,
"filters": 64,
"kernel_size": 3,
"padding": "valid",
"pre_activation_residual_unit": true
},
"profile_head_params": {
"filters": 1,
"kernel_size": 75,
"padding": "valid"
},
"counts_head_params": {
"units": [1],
"dropouts": [0.0],
"activations": ["linear"]
},
"profile_bias_module_params": {
"kernel_sizes": [1]
},
"counts_bias_module_params": {
},
"use_attribution_prior": false,
"attribution_prior_params": {
"frequency_limit": 150,
"limit_softness": 0.2,
"grad_smooth_sigma": 3,
"profile_grad_loss_weight": 200,
"counts_grad_loss_weight": 100
},
"loss_weights": [1, 42]
}
The loss_weights
field has two values the profile
loss weight and the
counts
loss weight. The counts loss weight can be automatically generated
using the following command
counts_loss_weight --input-data $INPUT_DATA
Now that we have our data prepped, we can train our first model!!
The command to train a model is called train
.
You can kick start the training process by executing this command in your shell
BASE_DIR=/users/john/ENCSR000EGM
DATA_DIR=$BASE_DIR/data
MODEL_DIR=$BASE_DIR/models
REFERENCE_DIR=$BASE_DIR/reference
CHROM_SIZES=$REFERENCE_DIR/hg38.chrom.sizes
REFERENCE_GENOME=$REFERENCE_DIR/hg38.genome.fa
CV_SPLITS=$BASE_DIR/splits.json
INPUT_DATA=$BASE_DIR/input_data.json
MODEL_PARAMS=$BASE_DIR/bpnet_params.json
mkdir $MODEL_DIR
train \
--input-data $INPUT_DATA \
--output-dir $MODEL_DIR \
--reference-genome $REFERENCE_GENOME \
--chroms $(paste -s -d ' ' $REFERENCE_DIR/hg38_chroms.txt) \
--chrom-sizes $CHROM_SIZES \
--splits $CV_SPLITS \
--model-arch-name BPNet \
--model-arch-params-json $MODEL_PARAMS \
--sequence-generator-name BPNet \
--model-output-filename model \
--input-seq-len 2114 \
--output-len 1000 \
--shuffle \
--threads 10 \
--epochs 100 \
--learning-rate 0.004
The splits.json
file contains information about the chromosomes that are used for validation and test. Here is a sample that contains one split.
{
"0": {
"val": ["chr10", "chr8"],
"test": ["chr1"]
}
}
Note: It might take a few minutes for the training to begin once the above command has been issued, be patient and you should see the training eventually start.
Once the training is complete we can generate predictions on the test chromosome.
PREDICTIONS_DIR=$BASE_DIR/predictions_and_metrics
mkdir $PREDICTIONS_DIR
predict \
--model $MODEL_DIR/model_split000.h5 \
--chrom-sizes $REFERENCE_DIR/GRCh38_EBV.chrom.sizes \
--chroms chr1 \
--reference-genome $REFERENCE_DIR/hg38.genome.fa \
--output-dir $PREDICTIONS_DIR \
--input-data $BASE_DIR/input.json \
--sequence-generator-name BPNet \
--input-seq-len 2114 \
--output-len 1000 \
--output-window-size 1000 \
--batch-size 64 \
--threads 2 \
--generate-predicted-profile-bigWigs
This script will output test metrics and also output bigwig tracks if the
--generate-predicted-profile-bigWigs
is specified
SHAP_DIR=$BASE_DIR/shap
mkdir $SHAP_DIR
shap_scores \
--reference-genome $REFERENCE_GENOME \
--model $MODEL_DIR/model_split000.h5 \
--bed-file $DATA_DIR/peaks_med.bed \
--chroms chr1 \
--output-dir $SHAP_DIR \
--input-seq-len 2114 \
--control-len 1000 \
--task-id 0 \
--input-data $BASE_DIR/input.json
MODISCO_PROFILE_DIR=$BASE_DIR/modisco_profile
mkdir $MODISCO_PROFILE_DIR
motif_discovery \
--scores-path $SHAP_DIR/profile_scores.h5 \
--output-directory $MODISCO_PROFILE_DIR
MODISCO_COUNTS_DIR=$BASE_DIR/modisco_counts
mkdir $MODISCO_COUNTS_DIR
motif_discovery \
--scores-path $SHAP_DIR/counts_scores.h5 \
--output-directory $MODISCO_COUNTS_DIR
outliers \
--input-data $INPUT_DATA \
--quantile 0.99 \
--quantile-value-scale-factor 1.2 \
--task 0 \
--chrom-sizes $REFERENCE_DIR/hg38.chrom.sizes \
--chroms $(paste -s -d ' ' $REFERENCE_DIR/hg38_chroms.txt) \
--sequence-len 1000 \
--blacklist $BASE_DIR/blacklist.bed \
--global-sample-weight 1.0 \
--output-bed $DATA_DIR/inliers.bed
EMBEDDINGS_DIR=$BASE_DIR/embeddings
mkdir $EMBEDDINGS_DIR
embeddings \
--model $MODEL_DIR/model_split000.h5 \
--reference-genome $REFERENCE_GENOME \
--embeddings-layer-name main_profile_head \
--cropped-size 1000 \
--input-layer-shape 2114 4 \
--peaks $DATA_DIR/peaks_med.bed \
--output-directory $EMBEDDINGS_DIR \
--batch-size 256