Skip to content

Commit

Permalink
Add docstring for GraphVectorStoreRetriever
Browse files Browse the repository at this point in the history
  • Loading branch information
cbornet committed Sep 20, 2024
1 parent f7bb364 commit 8a30c5b
Showing 1 changed file with 131 additions and 2 deletions.
133 changes: 131 additions & 2 deletions libs/community/langchain_community/graph_vectorstores/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ def nodes_to_documents(nodes: Iterable[Node]) -> Iterator[Document]:
)


@beta(message="Added in version 0.2.14 of langchain_core. API subject to change.")
@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.")
class GraphVectorStore(VectorStore):
"""A hybrid vector-and-graph graph store.
Expand Down Expand Up @@ -659,7 +659,136 @@ def as_retriever(self, **kwargs: Any) -> GraphVectorStoreRetriever:


class GraphVectorStoreRetriever(VectorStoreRetriever):
"""Retriever class for GraphVectorStore."""
"""Retriever for GraphVectorStore.
A graph vector store retriever is a retriever that uses a graph vector store to
retrieve documents.
It is similar to a vector store retriever, except that it uses both vector
similarity and graph connections to retrieve documents.
It uses the search methods implemented by a graph vector store, like traversal
search and MMR traversal search, to query the texts in the graph vector store.
Example::
store = CassandraGraphVectorStore(...)
retriever = store.as_retriever()
retriever.invoke("What is ...")
.. seealso::
:mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
How to use a graph vector store as a retriever
==============================================
Creating a retriever from a graph vector store
----------------------------------------------
You can build a retriever from a graph vector store using its
:meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.as_retriever`
method.
First we instantiate a graph vector store.
We will use a store backed by Cassandra
:class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore`
graph vector store::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.extractors import (
KeybertLinkExtractor,
LinkExtractorTransformer,
)
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
pipeline = LinkExtractorTransformer([KeybertLinkExtractor()])
pipeline.transform_documents(texts)
embeddings = OpenAIEmbeddings()
graph_vectorstore = CassandraGraphVectorStore.from_documents(texts, embeddings)
We can then instantiate a retriever::
retriever = graph_vectorstore.as_retriever()
This creates a retriever (specifically a ``GraphVectorStoreRetriever``), which we
can use in the usual way::
docs = retriever.invoke("what did the president say about ketanji brown jackson?")
Maximum marginal relevance traversal retrieval
----------------------------------------------
By default, the graph vector store retriever uses similarity search, then expands
the retrieved set by following a fixed number of graph edges.
If the underlying graph vector store supports maximum marginal relevance traversal,
you can specify that as the search type.
MMR-traversal is a retrieval method combining MMR and graph traversal.
The strategy first retrieves the top fetch_k results by similarity to the question.
It then iteratively expands the set of fetched documents by following adjacent_k
graph edges and selects the top k results based on maximum-marginal relevance using
the given ``lambda_mult``::
retriever = graph_vectorstore.as_retriever(search_type="mmr_traversal")
Passing search parameters
-------------------------
We can pass parameters to the underlying graph vectorstore's search methods using
``search_kwargs``.
Specifying graph traversal depth
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For example, we can set the graph traversal depth to only return documents
reachable through a given number of graph edges::
retriever = graph_vectorstore.as_retriever(search_kwargs={"depth": 3})
Specifying MMR parameters
^^^^^^^^^^^^^^^^^^^^^^^^^
When using search type ``mmr_traversal``, several parameters of the MMR algorithm
can be configured.
The ``fetch_k`` parameter determines how many documents are fetched using vector
similarity and ``adjacent_k`` parameter determines how many documents are fetched
using graph edges.
The ``lambda_mult`` parameter controls how the MMR re-ranking weights similarity to
the query string vs diversity among the retrieved documents as fetched documents
are selected for the set of ``k`` final results::
retriever = graph_vectorstore.as_retriever(
search_type="mmr",
search_kwargs={"fetch_k": 20, "adjacent_k": 20, "lambda_mult": 0.25},
)
Specifying top k
^^^^^^^^^^^^^^^^
We can also limit the number of documents ``k`` returned by the retriever.
Note that if ``depth`` is greater than zero, the retriever may return more documents
than is specified by ``k``, since both the original ``k`` documents retrieved using
vector similarity and any documents connected via graph edges will be returned::
retriever = graph_vectorstore.as_retriever(search_kwargs={"k": 1})
Similarity score threshold retrieval
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For example, we can set a similarity score threshold and only return documents with
a score above that threshold::
retriever = graph_vectorstore.as_retriever(search_kwargs={"score_threshold": 0.5})
""" # noqa: E501

vectorstore: GraphVectorStore
"""GraphVectorStore to use for retrieval."""
Expand Down

0 comments on commit 8a30c5b

Please sign in to comment.