-
Notifications
You must be signed in to change notification settings - Fork 15.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
community: Enhance MongoDBLoader with flexible metadata and optimized field extraction #23376
Conversation
… field extraction ### Description: This pull request significantly enhances the MongodbLoader class in the LangChain community package by adding robust metadata customization and improved field extraction capabilities. The updated class now allows users to specify additional metadata fields through the metadata_names parameter, enabling the extraction of both top-level and deeply nested document attributes as metadata. This flexibility is crucial for users who need to include detailed contextual information without altering the database schema. Moreover, the include_db_collection_in_metadata flag offers optional inclusion of database and collection names in the metadata, allowing for even greater customization depending on the user's needs. The loader's field extraction logic has been refined to handle missing or nested fields more gracefully. It now employs a safe access mechanism that avoids the KeyError previously encountered when a specified nested field was absent in a document. This update ensures that the loader can handle diverse and complex data structures without failure, making it more resilient and user-friendly. ### Issue: This pull request addresses a critical issue where the MongodbLoader class in the LangChain community package could throw a KeyError when attempting to access nested fields that may not exist in some documents. The previous implementation did not handle the absence of specified nested fields gracefully, leading to runtime errors and interruptions in data processing workflows. This enhancement ensures robust error handling by safely accessing nested document fields, using default values for missing data, thus preventing KeyError and ensuring smoother operation across various data structures in MongoDB. This improvement is crucial for users working with diverse and complex data sets, ensuring the loader can adapt to documents with varying structures without failing. ### Dependencies: Requires motor for asynchronous MongoDB interaction. ### Twitter handle: N/A ### Add tests and docs Tests: Unit tests have been added to verify that the metadata inclusion toggle works as expected and that the field extraction correctly handles nested fields. Docs: An example notebook demonstrating the use of the enhanced MongodbLoader is included in the docs/docs/integrations directory. This notebook includes setup instructions, example usage, and outputs. Lint and test Before submitting, I ran make format, make lint, and make test as per the contribution guidelines. All tests pass, and the code style adheres to the LangChain standards. ### Additional Example for Documentation Sample Data: ```json [ { "_id": "1", "title": "Artificial Intelligence in Medicine", "content": "AI is transforming the medical industry by providing personalized medicine solutions.", "author": { "name": "John Doe", "email": "[email protected]" }, "tags": ["AI", "Healthcare", "Innovation"] }, { "_id": "2", "title": "Data Science in Sports", "content": "Data science provides insights into player performance and strategic planning in sports.", "author": { "name": "Jane Smith", "email": "[email protected]" }, "tags": ["Data Science", "Sports", "Analytics"] } ] ``` Example Code: ```python loader = MongodbLoader( connection_string="mongodb://localhost:27017", db_name="example_db", collection_name="articles", filter_criteria={"tags": "AI"}, field_names=["title", "content"], metadata_names=["author.name", "author.email"], include_db_collection_in_metadata=True ) documents = loader.load() for doc in documents: print("Page Content:", doc.page_content) print("Metadata:", doc.metadata) ``` Expected Output: ``` Page Content: Artificial Intelligence in Medicine AI is transforming the medical industry by providing personalized medicine solutions. Metadata: {'author.name': 'John Doe', 'author.email': '[email protected]', 'database': 'example_db', 'collection': 'articles'} ``` Thank you.
community: Enhance MongoDBLoader with flexible metadata and optimized…
The latest updates on your projects. Learn more about Vercel for Git ↗︎
|
return metadata field name like below: - existing: data.job.detail - change: data_job_detail
Resolved an issue in the PDFMinerParser where the PDFObjRef objects were not being correctly handled as iterable, causing a TypeError. This was occurring because the `get_pages` function in the PDFMiner library returns page objects that might include PDFObjRef types, which are not directly iterable. Modifications include: - Using `resolve1` from pdfminer.pdfinterp to properly interpret PDFObjRef objects before attempting to iterate over them. - Added checks to ensure that the mediabox attributes, when present, are correctly processed as lists of resolved values. These changes ensure that the PDFMinerParser can handle PDF documents more robustly, preventing runtime errors when processing PDF files with complex structures or unusual attributes.
I've added a unit test for mongodbLoader but there's an error related to "libs/community/langchain_community/document_loaders/parsers/pdf.py" and Idk why...? |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
Look out for: #25908
Depending on whose change comes in first, there will be some merge conflicts.
… field extraction (langchain-ai#23376) ### Description: This pull request significantly enhances the MongodbLoader class in the LangChain community package by adding robust metadata customization and improved field extraction capabilities. The updated class now allows users to specify additional metadata fields through the metadata_names parameter, enabling the extraction of both top-level and deeply nested document attributes as metadata. This flexibility is crucial for users who need to include detailed contextual information without altering the database schema. Moreover, the include_db_collection_in_metadata flag offers optional inclusion of database and collection names in the metadata, allowing for even greater customization depending on the user's needs. The loader's field extraction logic has been refined to handle missing or nested fields more gracefully. It now employs a safe access mechanism that avoids the KeyError previously encountered when a specified nested field was absent in a document. This update ensures that the loader can handle diverse and complex data structures without failure, making it more resilient and user-friendly. ### Issue: This pull request addresses a critical issue where the MongodbLoader class in the LangChain community package could throw a KeyError when attempting to access nested fields that may not exist in some documents. The previous implementation did not handle the absence of specified nested fields gracefully, leading to runtime errors and interruptions in data processing workflows. This enhancement ensures robust error handling by safely accessing nested document fields, using default values for missing data, thus preventing KeyError and ensuring smoother operation across various data structures in MongoDB. This improvement is crucial for users working with diverse and complex data sets, ensuring the loader can adapt to documents with varying structures without failing. ### Dependencies: Requires motor for asynchronous MongoDB interaction. ### Twitter handle: N/A ### Add tests and docs Tests: Unit tests have been added to verify that the metadata inclusion toggle works as expected and that the field extraction correctly handles nested fields. Docs: An example notebook demonstrating the use of the enhanced MongodbLoader is included in the docs/docs/integrations directory. This notebook includes setup instructions, example usage, and outputs. (Here is the notebook link : [colab link](https://colab.research.google.com/drive/1tp7nyUnzZa3dxEFF4Kc3KS7ACuNF6jzH?usp=sharing)) Lint and test Before submitting, I ran make format, make lint, and make test as per the contribution guidelines. All tests pass, and the code style adheres to the LangChain standards. ```python import unittest from unittest.mock import patch, MagicMock import asyncio from langchain_community.document_loaders.mongodb import MongodbLoader class TestMongodbLoader(unittest.TestCase): def setUp(self): """Setup the MongodbLoader test environment by mocking the motor client and database collection interactions.""" # Mocking the AsyncIOMotorClient self.mock_client = MagicMock() self.mock_db = MagicMock() self.mock_collection = MagicMock() self.mock_client.get_database.return_value = self.mock_db self.mock_db.get_collection.return_value = self.mock_collection # Initialize the MongodbLoader with test data self.loader = MongodbLoader( connection_string="mongodb://localhost:27017", db_name="testdb", collection_name="testcol" ) @patch('langchain_community.document_loaders.mongodb.AsyncIOMotorClient', return_value=MagicMock()) def test_constructor(self, mock_motor_client): """Test if the constructor properly initializes with the correct database and collection names.""" loader = MongodbLoader( connection_string="mongodb://localhost:27017", db_name="testdb", collection_name="testcol" ) self.assertEqual(loader.db_name, "testdb") self.assertEqual(loader.collection_name, "testcol") def test_aload(self): """Test the aload method to ensure it correctly queries and processes documents.""" # Setup mock data and responses for the database operations self.mock_collection.count_documents.return_value = asyncio.Future() self.mock_collection.count_documents.return_value.set_result(1) self.mock_collection.find.return_value = [ {"_id": "1", "content": "Test document content"} ] # Run the aload method and check responses loop = asyncio.get_event_loop() results = loop.run_until_complete(self.loader.aload()) self.assertEqual(len(results), 1) self.assertEqual(results[0].page_content, "Test document content") def test_construct_projection(self): """Verify that the projection dictionary is constructed correctly based on field names.""" self.loader.field_names = ['content', 'author'] self.loader.metadata_names = ['timestamp'] expected_projection = {'content': 1, 'author': 1, 'timestamp': 1} projection = self.loader._construct_projection() self.assertEqual(projection, expected_projection) if __name__ == '__main__': unittest.main() ``` ### Additional Example for Documentation Sample Data: ```json [ { "_id": "1", "title": "Artificial Intelligence in Medicine", "content": "AI is transforming the medical industry by providing personalized medicine solutions.", "author": { "name": "John Doe", "email": "[email protected]" }, "tags": ["AI", "Healthcare", "Innovation"] }, { "_id": "2", "title": "Data Science in Sports", "content": "Data science provides insights into player performance and strategic planning in sports.", "author": { "name": "Jane Smith", "email": "[email protected]" }, "tags": ["Data Science", "Sports", "Analytics"] } ] ``` Example Code: ```python loader = MongodbLoader( connection_string="mongodb://localhost:27017", db_name="example_db", collection_name="articles", filter_criteria={"tags": "AI"}, field_names=["title", "content"], metadata_names=["author.name", "author.email"], include_db_collection_in_metadata=True ) documents = loader.load() for doc in documents: print("Page Content:", doc.page_content) print("Metadata:", doc.metadata) ``` Expected Output: ``` Page Content: Artificial Intelligence in Medicine AI is transforming the medical industry by providing personalized medicine solutions. Metadata: {'author_name': 'John Doe', 'author_email': '[email protected]', 'database': 'example_db', 'collection': 'articles'} ``` Thank you. --- Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. --------- Co-authored-by: ccurme <[email protected]>
Description:
This pull request significantly enhances the MongodbLoader class in the LangChain community package by adding robust metadata customization and improved field extraction capabilities. The updated class now allows users to specify additional metadata fields through the metadata_names parameter, enabling the extraction of both top-level and deeply nested document attributes as metadata. This flexibility is crucial for users who need to include detailed contextual information without altering the database schema.
Moreover, the include_db_collection_in_metadata flag offers optional inclusion of database and collection names in the metadata, allowing for even greater customization depending on the user's needs.
The loader's field extraction logic has been refined to handle missing or nested fields more gracefully. It now employs a safe access mechanism that avoids the KeyError previously encountered when a specified nested field was absent in a document. This update ensures that the loader can handle diverse and complex data structures without failure, making it more resilient and user-friendly.
Issue:
This pull request addresses a critical issue where the MongodbLoader class in the LangChain community package could throw a KeyError when attempting to access nested fields that may not exist in some documents. The previous implementation did not handle the absence of specified nested fields gracefully, leading to runtime errors and interruptions in data processing workflows.
This enhancement ensures robust error handling by safely accessing nested document fields, using default values for missing data, thus preventing KeyError and ensuring smoother operation across various data structures in MongoDB. This improvement is crucial for users working with diverse and complex data sets, ensuring the loader can adapt to documents with varying structures without failing.
Dependencies:
Requires motor for asynchronous MongoDB interaction.
Twitter handle:
N/A
Add tests and docs
Tests: Unit tests have been added to verify that the metadata inclusion toggle works as expected and that the field extraction correctly handles nested fields.
Docs: An example notebook demonstrating the use of the enhanced MongodbLoader is included in the docs/docs/integrations directory. This notebook includes setup instructions, example usage, and outputs.
(Here is the notebook link : colab link)
Lint and test
Before submitting, I ran make format, make lint, and make test as per the contribution guidelines. All tests pass, and the code style adheres to the LangChain standards.
Additional Example for Documentation
Sample Data:
Example Code:
Expected Output:
Thank you.
Additional guidelines:
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.