Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/learning lif #536

Merged
merged 4 commits into from
Dec 12, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 16 additions & 66 deletions tutorials/in_depth/three_factor_learning/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
import typing as ty
import numpy as np

from lava.proc.lif.process import LIF, AbstractLIF, LogConfig
from lava.proc.lif.process import LIF, AbstractLIF, LogConfig, LearningLIF
from lava.proc.io.source import RingBuffer
from lava.proc.dense.process import LearningDense, Dense
from lava.magma.core.process.neuron import LearningNeuronProcess
Expand All @@ -26,79 +26,28 @@
)


class RSTDPLIF(LearningNeuronProcess, AbstractLIF):
"""Leaky-Integrate-and-Fire (LIF) neural Process with RSTDP learning rule.

Parameters
----------
shape : tuple(int)
Number and topology of LIF neurons.
u : float, list, numpy.ndarray, optional
Initial value of the neurons' current.
v : float, list, numpy.ndarray, optional
Initial value of the neurons' voltage (membrane potential).
du : float, optional
Inverse of decay time-constant for current decay. Currently, only a
single decay can be set for the entire population of neurons.
dv : float, optional
Inverse of decay time-constant for voltage decay. Currently, only a
single decay can be set for the entire population of neurons.
bias_mant : float, list, numpy.ndarray, optional
Mantissa part of neuron bias.
bias_exp : float, list, numpy.ndarray, optional
Exponent part of neuron bias, if needed. Mostly for fixed point
implementations. Ignored for floating point implementations.
vth : float, optional
Neuron threshold voltage, exceeding which, the neuron will spike.
Currently, only a single threshold can be set for the entire
population of neurons.

"""
def __init__(
self,
*,
shape: ty.Tuple[int, ...],
u: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
v: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
du: ty.Optional[float] = 0,
dv: ty.Optional[float] = 0,
bias_mant: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
bias_exp: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
vth: ty.Optional[float] = 10,
name: ty.Optional[str] = None,
log_config: ty.Optional[LogConfig] = None,
**kwargs) -> None:
super().__init__(shape=shape, u=u, v=v, du=du, dv=dv,
bias_mant=bias_mant,
bias_exp=bias_exp, name=name,
log_config=log_config,
**kwargs)
self.vth = Var(shape=(1,), init=vth)

self.a_third_factor_in = InPort(shape=shape)
class RSTDPLIF(LearningLIF):
pass


@implements(proc=RSTDPLIF, protocol=LoihiProtocol)
@requires(CPU)
@tag('floating_pt')
@tag("floating_pt")
class RSTDPLIFModelFloat(LearningNeuronModelFloat, AbstractPyLifModelFloat):
"""Implementation of Leaky-Integrate-and-Fire neural
process in floating point precision with learning enabled
to do R-STDP.
"""
# Graded reward input spikes
a_third_factor_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, float)

s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, float)
vth: float = LavaPyType(float, float)

def __init__(self, proc_params):
super().__init__(proc_params)
self.s_out_buff = np.zeros(proc_params['shape'])
self.s_out_buff = np.zeros(proc_params["shape"])

def spiking_activation(self):
"""Spiking activation function for Learning LIF.
"""
"""Spiking activation function for Learning LIF."""
return self.v > self.vth

def calculate_third_factor_trace(self, s_graded_in: float) -> float:
Expand Down Expand Up @@ -133,11 +82,13 @@ def run_spk(self) -> None:
s_out_y1: sends the post-synaptic spike times.
s_out_y2: sends the graded third-factor reward signal.
"""

self.y1 = self.compute_post_synaptic_trace(self.s_out_buff)

super().run_spk()

a_graded_in = self.a_third_factor_in.recv()

self.y1 = self.compute_post_synaptic_trace(self.s_out_buff)
self.y2 = self.calculate_third_factor_trace(a_graded_in)

self.s_out_bap.send(self.s_out_buff)
Expand All @@ -148,7 +99,7 @@ def run_spk(self) -> None:

@implements(proc=RSTDPLIF, protocol=LoihiProtocol)
@requires(CPU)
@tag('bit_accurate_loihi', 'fixed_pt')
@tag("bit_accurate_loihi", "fixed_pt")
class RSTDPLIFBitAcc(LearningNeuronModelFixed, AbstractPyLifModelFixed):
"""Implementation of RSTDP Leaky-Integrate-and-Fire neural
process bit-accurate with Loihi's hardware LIF dynamics,
Expand All @@ -169,16 +120,14 @@ class RSTDPLIFBitAcc(LearningNeuronModelFixed, AbstractPyLifModelFixed):
- vth: unsigned 17-bit integer (0 to 131071).

"""
# Graded reward input spikes
a_third_factor_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, float)

s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, np.int32, precision=24)
vth: int = LavaPyType(int, np.int32, precision=17)

def __init__(self, proc_params):
super().__init__(proc_params)
self.effective_vth = 0
self.s_out_buff = np.zeros(proc_params['shape'])
self.s_out_buff = np.zeros(proc_params["shape"])

def scale_threshold(self):
"""Scale threshold according to the way Loihi hardware scales it. In
Expand All @@ -189,10 +138,9 @@ def scale_threshold(self):
self.isthrscaled = True

def spiking_activation(self):
"""Spike when voltage exceeds threshold.
"""
"""Spike when voltage exceeds threshold."""
return self.v > self.effective_vth

def calculate_third_factor_trace(self, s_graded_in: float) -> float:
"""Generate's a third factor reward traces based on
graded input spikes to the Learning LIF process.
Expand Down Expand Up @@ -225,11 +173,13 @@ def run_spk(self) -> None:
s_out_y1: sends the post-synaptic spike times.
s_out_y2: sends the graded third-factor reward signal.
"""

self.y1 = self.compute_post_synaptic_trace(self.s_out_buff)

super().run_spk()

a_graded_in = self.a_third_factor_in.recv()

self.y1 = self.compute_post_synaptic_trace(self.s_out_buff)
self.y2 = self.calculate_third_factor_trace(a_graded_in)

self.s_out_bap.send(self.s_out_buff)
Expand Down