Skip to content

The pytorch implementation for the paper of 'Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images'

Notifications You must be signed in to change notification settings

liaochengcsu/Cascade_Residual_Attention_Enhanced_for_Refinement_Road_Extraction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cascade_Residual_Attention_Enhanced_for_Refinement_Road_Extraction

The pytorch implementation for the paper of 'Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images'

Abstract

Efficient and accurate road extraction from remote sensing imagery is important for applications related to navigation and Geographic Information System updating. Existing data-driven methods based on semantic segmentation recognize roads from images pixel by pixel, which generally uses only local spatial information and causes issues of discontinuous extraction and jagged boundary recognition. To address these problems, we propose a cascaded attention-enhanced architecture to extract boundary-refined roads from remote sensing images. Our proposed architecture uses spatial attention residual blocks on multi-scale features to capture long-distance relations and introduce channel attention layers to optimize the multi-scale features fusion. Furthermore, a lightweight encoder-decoder network is connected to adaptively optimize the boundaries of the extracted roads. Our experiments showed that the proposed method outperformed existing methods and achieved state-of-the-art results on the Massachusetts dataset. In addition, our method achieved competitive results on new benchmark datasets, e.g., the DeepGlobe and the Huawei Cloud road extraction challenge.

Citation

Li, S.; Liao, C.; Ding, Y.; Hu, H.; Jia, Y.; Chen, M.; Xu, B.; Ge, X.; Liu, T.; Wu, D. Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2022, 11, 9. https://doi.org/10.3390/ijgi11010009

@Article{ijgi11010009,
AUTHOR = {Li, Shengfu and Liao, Cheng and Ding, Yulin and Hu, Han and Jia, Yang and Chen, Min and Xu, Bo and Ge, Xuming and Liu, Tianyang and Wu, Di},
TITLE = {Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images},
JOURNAL = {ISPRS International Journal of Geo-Information},
VOLUME = {11},
YEAR = {2022},
NUMBER = {1},
ARTICLE-NUMBER = {9},
URL = {https://www.mdpi.com/2220-9964/11/1/9},
ISSN = {2220-9964},
DOI = {10.3390/ijgi11010009}
}

About

The pytorch implementation for the paper of 'Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages