Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix or drop LTC_MECC_FP #410

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/headers/tomcrypt_private.h
Original file line number Diff line number Diff line change
Expand Up @@ -219,13 +219,13 @@ int ltc_ecc_projective_add_point(const ecc_point *P, const ecc_point *Q, ecc_poi

#if defined(LTC_MECC_FP)
/* optimized point multiplication using fixed point cache (HAC algorithm 14.117) */
int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *a, void *modulus, int map);
int ltc_ecc_fp_mulmod(void *k, const ecc_point *G, ecc_point *R, void *ma, void *modulus, int map);

/* functions for saving/loading/freeing/adding to fixed point cache */
int ltc_ecc_fp_save_state(unsigned char **out, unsigned long *outlen);
int ltc_ecc_fp_restore_state(unsigned char *in, unsigned long inlen);
void ltc_ecc_fp_free(void);
int ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock);
int ltc_ecc_fp_add_point(const ecc_point *g, void *ma, void *modulus, int lock);

/* lock/unlock all points currently in fixed point cache */
void ltc_ecc_fp_tablelock(int lock);
Expand Down
120 changes: 54 additions & 66 deletions src/math/fp/ltc_ecc_fp_mulmod.c
Original file line number Diff line number Diff line change
Expand Up @@ -571,6 +571,30 @@ static const struct {
#endif
};

static int _find_order_for_modulus(void *modulus, void **order)
{
void *bn;
int err;
const ltc_ecc_curve *curve;

if ((err = mp_init(&bn)) != CRYPT_OK) return err;;
for (curve = ltc_ecc_curves; curve->prime != NULL; curve++) {
if (mp_read_radix(bn, curve->prime, 16) != CRYPT_OK) continue;
if (mp_cmp(bn, modulus) != LTC_MP_EQ) continue;
break; /* found */
}
mp_clear(bn);
if (curve->order == NULL) return CRYPT_ERROR;
if ((err = mp_init(order)) != CRYPT_OK) {
return err;
}
if ((err = mp_read_radix(*order, curve->order, 16)) != CRYPT_OK) {
mp_clear(order);
return err;
}
return CRYPT_OK;
}

/* find a hole and free as required, return -1 if no hole found */
static int _find_hole(void)
{
Expand Down Expand Up @@ -608,7 +632,7 @@ static int _find_hole(void)
}

/* determine if a base is already in the cache and if so, where */
static int _find_base(ecc_point *g)
static int _find_base(const ecc_point *g)
{
int x;
for (x = 0; x < FP_ENTRIES; x++) {
Expand All @@ -626,7 +650,7 @@ static int _find_base(ecc_point *g)
}

/* add a new base to the cache */
static int _add_entry(int idx, ecc_point *g)
static int _add_entry(int idx, const ecc_point *g)
{
unsigned x, y;

Expand Down Expand Up @@ -668,7 +692,7 @@ static int _add_entry(int idx, ecc_point *g)
* The algorithm builds patterns in increasing bit order by first making all
* single bit input patterns, then all two bit input patterns and so on
*/
static int _build_lut(int idx, void *a, void *modulus, void *mp, void *mu)
static int _build_lut(int idx, void *ma, void *modulus, void *mp, void *mu)
{
unsigned x, y, err, bitlen, lut_gap;
void *tmp;
Expand Down Expand Up @@ -707,7 +731,7 @@ static int _build_lut(int idx, void *a, void *modulus, void *mp, void *mu)

/* now double it bitlen/FP_LUT times */
for (y = 0; y < lut_gap; y++) {
if ((err = ltc_mp.ecc_ptdbl(fp_cache[idx].LUT[1<<x], fp_cache[idx].LUT[1<<x], a, modulus, mp)) != CRYPT_OK) {
if ((err = ltc_mp.ecc_ptdbl(fp_cache[idx].LUT[1<<x], fp_cache[idx].LUT[1<<x], ma, modulus, mp)) != CRYPT_OK) {
goto ERR;
}
}
Expand All @@ -720,7 +744,7 @@ static int _build_lut(int idx, void *a, void *modulus, void *mp, void *mu)

/* perform the add */
if ((err = ltc_mp.ecc_ptadd(fp_cache[idx].LUT[lut_orders[y].terma], fp_cache[idx].LUT[lut_orders[y].termb],
fp_cache[idx].LUT[y], a, modulus, mp)) != CRYPT_OK) {
fp_cache[idx].LUT[y], ma, modulus, mp)) != CRYPT_OK) {
goto ERR;
}
}
Expand All @@ -747,9 +771,8 @@ static int _build_lut(int idx, void *a, void *modulus, void *mp, void *mu)
/* fix y */
if ((err = mp_mulmod(fp_cache[idx].LUT[x]->y, tmp, modulus, fp_cache[idx].LUT[x]->y)) != CRYPT_OK) { goto ERR; }

/* free z */
mp_clear(fp_cache[idx].LUT[x]->z);
fp_cache[idx].LUT[x]->z = NULL;
/* fix z */
if ((err = mp_set(fp_cache[idx].LUT[x]->z, 1)) != CRYPT_OK) { goto ERR; }
}
mp_clear(tmp);

Expand All @@ -775,7 +798,7 @@ static int _build_lut(int idx, void *a, void *modulus, void *mp, void *mu)
}

/* perform a fixed point ECC mulmod */
static int _accel_fp_mul(int idx, void *k, ecc_point *R, void *a, void *modulus, void *mp, int map)
static int _accel_fp_mul(int idx, void *k, ecc_point *R, void *ma, void *modulus, void *mp, int map)
{
unsigned char kb[128];
int x;
Expand All @@ -785,19 +808,7 @@ static int _accel_fp_mul(int idx, void *k, ecc_point *R, void *a, void *modulus,
/* if it's smaller than modulus we fine */
if (mp_unsigned_bin_size(k) > mp_unsigned_bin_size(modulus)) {
/* find order */
y = mp_unsigned_bin_size(modulus);
for (x = 0; ltc_ecc_sets[x].size; x++) {
if (y <= (unsigned)ltc_ecc_sets[x].size) break;
}

/* back off if we are on the 521 bit curve */
if (y == 66) --x;

if ((err = mp_init(&order)) != CRYPT_OK) {
return err;
}
if ((err = mp_read_radix(order, ltc_ecc_sets[x].order, 16)) != CRYPT_OK) {
mp_clear(&order);
if ((err = _find_order_for_modulus(modulus, &order)) != CRYPT_OK) {
return err;
}

Expand Down Expand Up @@ -868,14 +879,14 @@ static int _accel_fp_mul(int idx, void *k, ecc_point *R, void *a, void *modulus,

/* double if not first */
if (!first) {
if ((err = ltc_mp.ecc_ptdbl(R, R, a, modulus, mp)) != CRYPT_OK) {
if ((err = ltc_mp.ecc_ptdbl(R, R, ma, modulus, mp)) != CRYPT_OK) {
return err;
}
}

/* add if not first, otherwise copy */
if (!first && z) {
if ((err = ltc_mp.ecc_ptadd(R, fp_cache[idx].LUT[z], R, a, modulus, mp)) != CRYPT_OK) {
if ((err = ltc_mp.ecc_ptadd(R, fp_cache[idx].LUT[z], R, ma, modulus, mp)) != CRYPT_OK) {
return err;
}
} else if (z) {
Expand Down Expand Up @@ -910,19 +921,7 @@ static int _accel_fp_mul2add(int idx1, int idx2,
/* if it's smaller than modulus we fine */
if (mp_unsigned_bin_size(kA) > mp_unsigned_bin_size(modulus)) {
/* find order */
y = mp_unsigned_bin_size(modulus);
for (x = 0; ltc_ecc_sets[x].size; x++) {
if (y <= (unsigned)ltc_ecc_sets[x].size) break;
}

/* back off if we are on the 521 bit curve */
if (y == 66) --x;

if ((err = mp_init(&order)) != CRYPT_OK) {
return err;
}
if ((err = mp_read_radix(order, ltc_ecc_sets[x].order, 16)) != CRYPT_OK) {
mp_clear(&order);
if ((err = _find_order_for_modulus(modulus, &order)) != CRYPT_OK) {
return err;
}

Expand All @@ -948,19 +947,7 @@ static int _accel_fp_mul2add(int idx1, int idx2,
/* if it's smaller than modulus we fine */
if (mp_unsigned_bin_size(kB) > mp_unsigned_bin_size(modulus)) {
/* find order */
y = mp_unsigned_bin_size(modulus);
for (x = 0; ltc_ecc_sets[x].size; x++) {
if (y <= (unsigned)ltc_ecc_sets[x].size) break;
}

/* back off if we are on the 521 bit curve */
if (y == 66) --x;

if ((err = mp_init(&order)) != CRYPT_OK) {
return err;
}
if ((err = mp_read_radix(order, ltc_ecc_sets[x].order, 16)) != CRYPT_OK) {
mp_clear(&order);
if ((err = _find_order_for_modulus(modulus, &order)) != CRYPT_OK) {
return err;
}

Expand Down Expand Up @@ -1105,14 +1092,15 @@ static int _accel_fp_mul2add(int idx1, int idx2,
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B)
@param ma ECC curve parameter a in montgomery form
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C,
void *a,
void *modulus)
int ltc_ecc_fp_mul2add(const ecc_point *A, void *kA,
const ecc_point *B, void *kB,
ecc_point *C,
void *ma,
void *modulus)
{
int idx1, idx2, err;
void *mp, *mu;
Expand Down Expand Up @@ -1168,7 +1156,7 @@ int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
}

/* build the LUT */
if ((err = _build_lut(idx1, a, modulus, mp, mu)) != CRYPT_OK) {
if ((err = _build_lut(idx1, ma, modulus, mp, mu)) != CRYPT_OK) {
goto LBL_ERR;;
}
}
Expand All @@ -1189,7 +1177,7 @@ int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
}

/* build the LUT */
if ((err = _build_lut(idx2, a, modulus, mp, mu)) != CRYPT_OK) {
if ((err = _build_lut(idx2, ma, modulus, mp, mu)) != CRYPT_OK) {
goto LBL_ERR;;
}
}
Expand All @@ -1200,9 +1188,9 @@ int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
/* compute mp */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { goto LBL_ERR; }
}
err = _accel_fp_mul2add(idx1, idx2, kA, kB, C, a, modulus, mp);
err = _accel_fp_mul2add(idx1, idx2, kA, kB, C, ma, modulus, mp);
} else {
err = ltc_ecc_mul2add(A, kA, B, kB, C, a, modulus);
err = ltc_ecc_mul2add(A, kA, B, kB, C, ma, modulus);
}
LBL_ERR:
LTC_MUTEX_UNLOCK(&ltc_ecc_fp_lock);
Expand All @@ -1220,12 +1208,12 @@ int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
@param k The multiplicand
@param G Base point to multiply
@param R [out] Destination of product
@param a ECC curve parameter a
@param ma ECC curve parameter a in montgomery form
@param modulus The modulus for the curve
@param map [boolean] If non-zero maps the point back to affine co-ordinates, otherwise it's left in jacobian-montgomery form
@return CRYPT_OK if successful
*/
int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *a, void *modulus, int map)
int ltc_ecc_fp_mulmod(void *k, const ecc_point *G, ecc_point *R, void *ma, void *modulus, int map)
{
int idx, err;
void *mp, *mu;
Expand Down Expand Up @@ -1267,7 +1255,7 @@ int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *a, void *modulu
}

/* build the LUT */
if ((err = _build_lut(idx, a, modulus, mp, mu)) != CRYPT_OK) {
if ((err = _build_lut(idx, ma, modulus, mp, mu)) != CRYPT_OK) {
goto LBL_ERR;;
}
}
Expand All @@ -1277,9 +1265,9 @@ int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *a, void *modulu
/* compute mp */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { goto LBL_ERR; }
}
err = _accel_fp_mul(idx, k, R, a, modulus, mp, map);
err = _accel_fp_mul(idx, k, R, ma, modulus, mp, map);
} else {
err = ltc_ecc_mulmod(k, G, R, a, modulus, map);
err = ltc_ecc_mulmod(k, G, R, ma, modulus, map);
}
LBL_ERR:
LTC_MUTEX_UNLOCK(&ltc_ecc_fp_lock);
Expand Down Expand Up @@ -1329,7 +1317,7 @@ void ltc_ecc_fp_free(void)
@return CRYPT_OK on success
*/
int
ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock)
ltc_ecc_fp_add_point(const ecc_point *g, void *ma, void *modulus, int lock)
{
int idx;
int err;
Expand Down Expand Up @@ -1366,7 +1354,7 @@ ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock)
}

/* build the LUT */
if ((err = _build_lut(idx, a, modulus, mp, mu)) != CRYPT_OK) {
if ((err = _build_lut(idx, ma, modulus, mp, mu)) != CRYPT_OK) {
goto LBL_ERR;
}
fp_cache[idx].lru_count = 2;
Expand Down