Skip to content

Straightforward CUDA PairHMM implementation easy to use with your own flow

License

Notifications You must be signed in to change notification settings

lienliang/Pair_HMM_forward_GPU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

aligner_gpu_version

Author: Enliang Li

mian translation for the forward algorithm (gpu-version)

Latest Version: 1.2 on Apr.15th 2019

Use following command to build:

using the "compile.sh" to build the sources

Performance Details (TITAN Xp) [HOLMES flow (27 states)]

forward_matrix [x_dim+1][y_dim+1][batch][states-1]

forward_matrix: torch.Size

([6, 7, 1, 26])

10.79748 ms / call (float)

11.009 ms / call (double)

forward_matrix: torch.Size

([16, 19, 1, 26])

11.50272 ms / call (float)

11.9557 ms / call (double)

forward_matrix: torch.Size

([61, 127, 1, 26])

30.30934 ms / call (float)

33.30686 ms / call (double)

Performance Details (TITAN Xp) [regular flow (3 states)]

forward_matrix [x_dim+1][y_dim+1][batch][states-1]

forward_matrix: torch.Size

([16, 19, 1, 3])

12.6679 ms / call (float)

13.0121 ms / call (double)

forward_matrix: torch.Size

([16, 19, 3, 3])

12.9385 ms / call (float)

13.7454 ms / call (double)

forward_matrix: torch.Size

([159, 149, 1, 3])

69.3239 ms / call (float)

72.4838 ms / call (double)

PyCUDA Support:

copy-paste the function definition and call it with PyCUDA in your own flow

For examples, please refer to:

https://wiki.tiker.net/PyCuda/Examples

Copy Right Reserved by AndreasKloeckner

About

Straightforward CUDA PairHMM implementation easy to use with your own flow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published