Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move handling of integer signedness to the backend conversions #2597

Merged
merged 1 commit into from
Nov 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions include/torch-mlir/Dialect/Torch/Utils/Utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,8 @@ bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems);
std::optional<int64_t> matchLegalConstantIndexIntoListOfSize(Value v,
int64_t length);
torch_upstream::ScalarType getScalarTypeForType(Type type);
FailureOr<Type> getTypeForScalarType(
MLIRContext *context, torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness = IntegerType::Signed);
FailureOr<Type> getTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt);

Type getTypeForTorchType(
MLIRContext *context, Type type,
Expand Down
12 changes: 6 additions & 6 deletions lib/Conversion/TorchToLinalg/TensorConstructors.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -127,9 +127,9 @@ class ConvertConstantTensorAllocOp : public OpConversionPattern<OpTy> {
if (!matchPattern(op.getDtype(), m_TorchConstantInt(&dtypeInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
FailureOr<Type> maybeResultElementType =
torch_to_linalg::getBackendTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
Expand Down Expand Up @@ -233,9 +233,9 @@ class ConvertAtenEmptyMemoryFormatOp
if (!matchPattern(op.getDtype(), m_TorchConstantInt(&dtypeInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
FailureOr<Type> maybeResultElementType =
torch_to_linalg::getBackendTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
Expand Down
6 changes: 3 additions & 3 deletions lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1057,9 +1057,9 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
atenToDtype.emitError("unimplemented: dtype must be a constant integer");
return nullptr;
}
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
atenToDtype->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
FailureOr<Type> maybeResultElementType =
torch_to_linalg::getBackendTypeForScalarType(
atenToDtype->getContext(), (torch_upstream::ScalarType)dtypeInt);
if (failed(maybeResultElementType)) {
atenToDtype.emitError("unable to convert `dtypeInt` to builtin type");
return nullptr;
Expand Down
16 changes: 15 additions & 1 deletion lib/Conversion/TorchToLinalg/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"

using namespace mlir;
Expand Down Expand Up @@ -546,3 +545,18 @@ Value torch_to_linalg::convertTensorToElementType(OpBuilder &b, Location loc,
return torch_to_linalg::createElementwiseLinalgGeneric(
b, loc, {tensor}, elementType, dtypePromoteBody);
}

FailureOr<Type> torch_to_linalg::getBackendTypeForScalarType(
MLIRContext *context, torch_upstream::ScalarType dtypeInt) {
FailureOr<Type> maybeType =
getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
if (failed(maybeType)) {
return failure();
}
Type type = *maybeType;
// The linalg-on-tensors backend currently expects integers to be signless.
if (auto intType = type.dyn_cast<IntegerType>()) {
type = IntegerType::get(context, intType.getWidth(), IntegerType::Signless);
}
return type;
}
7 changes: 7 additions & 0 deletions lib/Conversion/TorchToLinalg/Utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
//===----------------------------------------------------------------------===//

#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"

namespace mlir {
namespace torch {
Expand Down Expand Up @@ -88,6 +89,12 @@ Value removeSizeInformation(OpBuilder &b, Location loc, Value tensor);
Value convertTensorToElementType(OpBuilder &b, Location loc, Value tensor,
Type elementType);

// Convert a scalar type to the corresponding builtin type in the
// linalg-on-tensors backend.
FailureOr<Type>
getBackendTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt);

} // namespace torch_to_linalg
} // namespace torch
} // namespace mlir
9 changes: 7 additions & 2 deletions lib/Conversion/TorchToStablehlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1672,13 +1672,18 @@ LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
op->getContext(), (torch_upstream::ScalarType)dtypeInt);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
}
resultElementType = *maybeResultElementType;
// The stablehlo backend expects signed integers to be signless.
if (resultElementType.isSignedInteger()) {
qingyunqu marked this conversation as resolved.
Show resolved Hide resolved
resultElementType = IntegerType::get(
op->getContext(), resultElementType.getIntOrFloatBitWidth(),
IntegerType::Signless);
}
}

// Create an uninitialized tensor of `resultSize` shape.
Expand Down
9 changes: 4 additions & 5 deletions lib/Dialect/Torch/Utils/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -85,17 +85,16 @@ Type Torch::getTypeForTorchType(

FailureOr<Type>
Torch::getTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness) {
torch_upstream::ScalarType dtypeInt) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Float:
return Float32Type::get(context);
case torch_upstream::ScalarType::Double:
return Float64Type::get(context);
case torch_upstream::ScalarType::Long:
return IntegerType::get(context, 64, signedness);
return IntegerType::get(context, 64, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::Int:
return IntegerType::get(context, 32, signedness);
return IntegerType::get(context, 32, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::Bool:
return IntegerType::get(context, 1);
case torch_upstream::ScalarType::BFloat16:
Expand All @@ -105,7 +104,7 @@ Torch::getTypeForScalarType(MLIRContext *context,
case torch_upstream::ScalarType::Byte:
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Unsigned);
case torch_upstream::ScalarType::Char:
return mlir::IntegerType::get(context, 8, signedness);
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::ComplexHalf:
return mlir::ComplexType::get(Float16Type::get(context));
case torch_upstream::ScalarType::ComplexFloat:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -451,6 +451,25 @@ def EmptyModule_int(module, tu: TestUtils):
module.forward()


class EmptyUInt8Module(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
])
def forward(self):
empty = torch.ops.aten.empty([1], dtype=torch.uint8)
return torch.ops.aten.zeros_like(empty).to(torch.int8)


@register_test_case(module_factory=lambda: EmptyUInt8Module())
def EmptyModule_uint8(module, tu: TestUtils):
module.forward()


class EmptyFloatModule(torch.nn.Module):

def __init__(self):
Expand Down