FMRConv is a spatial convolution operator for point cloud
This is an implementation of FMRConv by PyTorch.
This project propose a new scheme, called Frame Multi-Relationship Convolution (FMRConv), for performing the 3D point cloud convolution and extracting the features from the individual cloud points.
This project passed the test in the following environment
- PyTorch >= 1.12
- PyTorch3D >= 0.6.2 how to install
- NVIDIA CUDA Toolkit >= 11.5
- NVIDIA cuDNN >= 7.6
- NVIDIA TITAN RTX / NVIDIA Tesla V100 / NVIDIA GeForce RTX3090
- 32GB RAM
Download alignment ModelNet here and save in data/modelnet40_normal_resampled/
.
python train_cls.py --log_dir [your log dir]
We provide a pre-trained model of FMRConv(Single Scale Grouping) here with an accuracy of 93.35%.
Download alignment ShapeNet here and save in data/shapenetcore_partanno_segmentation_benchmark_v0_normal/
.
python train_partseg.py --normal --log_dir [your log dir]
Download 3D indoor parsing dataset (S3DIS) here and save in data/Stanford3dDataset_v1.2_Aligned_Version/
.
cd data_utils
python collect_indoor3d_data.py
Processed data will save in data/stanford_indoor3d/
.
python train_semseg.py --log_dir [your log dir]
python test_semseg.py --log_dir [your log dir] --test_area 5 --visual
This implementation of experiment is heavily reference to yanx27/Pointnet_Pointnet2_pytorch
Thanks very much !