-
Notifications
You must be signed in to change notification settings - Fork 4.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
397 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,397 @@ | ||
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright: | ||
# | ||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from dataclasses import dataclass, field | ||
import json | ||
import math | ||
import jsonlines | ||
import pathlib | ||
from multiprocessing import Pool | ||
from typing import Dict, Optional, Sequence | ||
|
||
import numpy as np | ||
import torch | ||
from torch.utils.data import Dataset | ||
import transformers | ||
from transformers import Trainer | ||
from transformers.trainer_pt_utils import LabelSmoother | ||
|
||
from fastchat.conversation import SeparatorStyle | ||
from fastchat.model.model_adapter import get_conversation_template | ||
|
||
IGNORE_TOKEN_ID = LabelSmoother.ignore_index | ||
|
||
|
||
@dataclass | ||
class ModelArguments: | ||
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | ||
|
||
|
||
@dataclass | ||
class DataArguments: | ||
data_path: str = field( | ||
default=None, metadata={"help": "Path to the training data."} | ||
) | ||
lazy_preprocess: bool = False | ||
|
||
|
||
@dataclass | ||
class TrainingArguments(transformers.TrainingArguments): | ||
cache_dir: Optional[str] = field(default=None) | ||
optim: str = field(default="adamw_torch") | ||
model_max_length: int = field( | ||
default=512, | ||
metadata={ | ||
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | ||
}, | ||
) | ||
|
||
|
||
local_rank = None | ||
|
||
|
||
def rank0_print(*args): | ||
if local_rank == 0: | ||
print(*args) | ||
|
||
|
||
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | ||
"""Collects the state dict and dump to disk.""" | ||
state_dict = trainer.model.state_dict() | ||
if trainer.args.should_save: | ||
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | ||
del state_dict | ||
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | ||
|
||
|
||
def apply_prompt_template(sources, template_id, systems=None): | ||
conv = get_conversation_template(template_id) | ||
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | ||
conversations = [] | ||
for i, source in enumerate(sources): | ||
if roles[source[0]["from"]] != conv.roles[0]: | ||
source = source[1:] | ||
|
||
conv.messages = [] | ||
for j, sentence in enumerate(source): | ||
role = roles[sentence["from"]] | ||
assert role == conv.roles[j % 2], f"{i}" | ||
conv.append_message(role, sentence["value"]) | ||
if systems and systems[i]: | ||
conv.set_system_message(systems[i]) | ||
prompt = conv.get_prompt() | ||
conversations.append(prompt) | ||
return conversations, conv | ||
|
||
|
||
def tokenize_conversations(conversations, tokenizer): | ||
input_ids = tokenizer( | ||
conversations, | ||
return_tensors="pt", | ||
padding="max_length", | ||
max_length=tokenizer.model_max_length, | ||
truncation=True, | ||
).input_ids | ||
targets = input_ids.clone() | ||
return input_ids, targets | ||
|
||
|
||
def get_prompt_separator(conv): | ||
if conv.sep_style == SeparatorStyle.ADD_COLON_SINGLE: | ||
user_turn_separator = conv.sep2 | ||
assistant_turn_separator = conv.roles[1] + ": " | ||
|
||
elif conv.sep_style == SeparatorStyle.ADD_COLON_TWO: | ||
user_turn_separator = conv.sep2 | ||
assistant_turn_separator = conv.roles[1] + ": " | ||
|
||
elif conv.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE: | ||
if conv.sep2 is None: | ||
user_turn_separator = conv.roles[0] + ": " | ||
else: | ||
user_turn_separator = conv.sep2 | ||
|
||
assistant_turn_separator = conv.roles[1] + ": " | ||
|
||
elif conv.sep_style == SeparatorStyle.LLAMA2: | ||
user_turn_separator = conv.sep2 | ||
assistant_turn_separator = conv.roles[1] + " " | ||
|
||
elif conv.sep_style == SeparatorStyle.CHATML: | ||
if conv.sep2 is None: | ||
user_turn_separator = conv.sep | ||
else: | ||
user_turn_separator = conv.sep2 | ||
|
||
assistant_turn_separator = conv.roles[1] + "\n" | ||
|
||
return user_turn_separator, assistant_turn_separator | ||
|
||
|
||
def mask_targets(conversations, targets, tokenizer, conv): | ||
for conversation, target in zip(conversations, targets): | ||
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | ||
if tokenizer.eos_token is None: | ||
cur_len = 0 | ||
elif tokenizer.eos_token is not None and target[0] != tokenizer.bos_token_id: | ||
cur_len = 0 | ||
elif tokenizer.eos_token is not None and target[0] == tokenizer.bos_token_id: | ||
cur_len = 1 | ||
|
||
target[:cur_len] = IGNORE_TOKEN_ID | ||
user_turn_separator, assistant_turn_separator = get_prompt_separator(conv) | ||
turns = conversation.split(user_turn_separator) | ||
for i, turn in enumerate(turns): | ||
if turn == "": | ||
break | ||
|
||
if i != 0: | ||
turn = user_turn_separator + turn | ||
|
||
turn_len = len(tokenizer(turn).input_ids) | ||
|
||
if assistant_turn_separator in turn: | ||
parts = turn.rsplit(assistant_turn_separator) | ||
parts[0] += assistant_turn_separator | ||
else: | ||
parts = [turn] | ||
|
||
instruction_len = len( | ||
tokenizer(parts[0], add_special_tokens=False).input_ids | ||
) | ||
|
||
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | ||
cur_len += turn_len | ||
|
||
target[cur_len:] = IGNORE_TOKEN_ID | ||
|
||
if False: # Inspect and check the correctness of masking | ||
z = target.clone() | ||
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | ||
rank0_print(tokenizer.decode(z)) | ||
|
||
if cur_len < tokenizer.model_max_length: | ||
if cur_len != total_len: | ||
target[:] = IGNORE_TOKEN_ID | ||
rank0_print( | ||
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | ||
f" (ignored)" | ||
) | ||
return targets | ||
|
||
|
||
def preprocess( | ||
sources, tokenizer: transformers.PreTrainedTokenizer, template_id, **kwargs | ||
) -> Dict: | ||
systems = None if not kwargs else kwargs.get("systems", None) | ||
|
||
# If the data volume is small, process it directly in the main thread | ||
if len(sources) <= 1000: | ||
conversations, conv = apply_prompt_template(sources, template_id, systems) | ||
input_ids, targets = tokenize_conversations(conversations, tokenizer) | ||
targets = mask_targets(conversations, targets, tokenizer, conv) | ||
else: # If the data volume is large, use multithreading for processing | ||
with Pool() as p: | ||
conversations, conv = p.apply_async( | ||
apply_prompt_template, (sources, template_id, systems) | ||
).get() | ||
input_ids, targets = p.apply_async( | ||
tokenize_conversations, (conversations, tokenizer) | ||
).get() | ||
targets = p.apply_async( | ||
mask_targets, (conversations, targets, tokenizer, conv) | ||
).get() | ||
p.close() | ||
p.join() | ||
|
||
return dict( | ||
input_ids=input_ids, | ||
labels=targets, | ||
attention_mask=input_ids.ne(tokenizer.pad_token_id), | ||
) | ||
|
||
|
||
class SupervisedDataset(Dataset): | ||
"""Dataset for supervised fine-tuning.""" | ||
|
||
def __init__( | ||
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, template_id | ||
): | ||
super(SupervisedDataset, self).__init__() | ||
|
||
rank0_print("Formatting inputs...") | ||
systems = [example.get("system", "") for example in raw_data] | ||
sources = [example["conversations"] for example in raw_data] | ||
|
||
data_dict = preprocess(sources, tokenizer, template_id, systems=systems) | ||
|
||
self.input_ids = data_dict["input_ids"] | ||
self.labels = data_dict["labels"] | ||
self.attention_mask = data_dict["attention_mask"] | ||
|
||
def __len__(self): | ||
return len(self.input_ids) | ||
|
||
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | ||
return dict( | ||
input_ids=self.input_ids[i], | ||
labels=self.labels[i], | ||
attention_mask=self.attention_mask[i], | ||
) | ||
|
||
|
||
class LazySupervisedDataset(Dataset): | ||
"""Dataset for supervised fine-tuning.""" | ||
|
||
def __init__( | ||
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, template_id | ||
): | ||
super(LazySupervisedDataset, self).__init__() | ||
self.tokenizer = tokenizer | ||
self.template_id = template_id | ||
|
||
rank0_print("Formatting inputs...Skip in lazy mode") | ||
self.raw_data = raw_data | ||
self.cached_data_dict = {} | ||
|
||
def __len__(self): | ||
return len(self.raw_data) | ||
|
||
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | ||
if i in self.cached_data_dict: | ||
return self.cached_data_dict[i] | ||
|
||
ret = preprocess( | ||
[self.raw_data[i]["conversations"]], | ||
self.tokenizer, | ||
self.template_id, | ||
systems=[self.raw_data[i].get("system", "")], | ||
) | ||
ret = dict( | ||
input_ids=ret["input_ids"][0], | ||
labels=ret["labels"][0], | ||
attention_mask=ret["attention_mask"][0], | ||
) | ||
self.cached_data_dict[i] = ret | ||
|
||
return ret | ||
|
||
|
||
def make_supervised_data_module( | ||
tokenizer: transformers.PreTrainedTokenizer, | ||
data_args, | ||
template_id, | ||
train_ratio=0.98, | ||
) -> Dict: | ||
"""Make dataset and collator for supervised fine-tuning.""" | ||
train_ratio = min(train_ratio, 1.0) | ||
dataset_cls = ( | ||
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset | ||
) | ||
rank0_print("Loading data...") | ||
data_path = data_args.data_path | ||
if data_path.endswith(".json"): | ||
raw_data = json.load(open(data_path, "r")) | ||
elif data_path.endswith(".jsonl"): | ||
with jsonlines.open(data_path, mode="r") as reader: | ||
raw_data = [item for item in reader] | ||
|
||
# Split train/test | ||
np.random.seed(0) | ||
perm = np.random.permutation(len(raw_data)) | ||
split = int(len(perm) * train_ratio) | ||
train_indices = perm[:split] | ||
if train_ratio < 1: | ||
eval_indices = perm[split:] | ||
else: | ||
# if train_ratio==1, we use 5% of data as eval data, make sure trainer will not throw error when eval data is empty | ||
eval_indices = perm[-int(len(perm) * 0.05) :] | ||
train_raw_data = [raw_data[i] for i in train_indices] | ||
eval_raw_data = [raw_data[i] for i in eval_indices] | ||
rank0_print(f"#train {len(train_raw_data)}, #eval {len(eval_raw_data)}") | ||
|
||
train_dataset = dataset_cls( | ||
train_raw_data, tokenizer=tokenizer, template_id=template_id | ||
) | ||
eval_dataset = dataset_cls( | ||
eval_raw_data, tokenizer=tokenizer, template_id=template_id | ||
) | ||
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) | ||
|
||
|
||
def train(): | ||
global local_rank | ||
|
||
parser = transformers.HfArgumentParser( | ||
(ModelArguments, DataArguments, TrainingArguments) | ||
) | ||
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | ||
local_rank = training_args.local_rank | ||
config = transformers.AutoConfig.from_pretrained( | ||
model_args.model_name_or_path, | ||
trust_remote_code=True, | ||
cache_dir=training_args.cache_dir, | ||
) | ||
# Set RoPE scaling factor | ||
orig_ctx_len = getattr(config, "max_position_embeddings", None) | ||
if orig_ctx_len and training_args.model_max_length > orig_ctx_len: | ||
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len)) | ||
config.rope_scaling = {"type": "linear", "factor": scaling_factor} | ||
config.use_cache = False | ||
model = transformers.AutoModelForCausalLM.from_pretrained( | ||
model_args.model_name_or_path, | ||
config=config, | ||
trust_remote_code=True, | ||
cache_dir=training_args.cache_dir, | ||
) | ||
# Tie the weights | ||
model.tie_weights() | ||
|
||
tokenizer = transformers.AutoTokenizer.from_pretrained( | ||
model_args.model_name_or_path, | ||
config=config, | ||
trust_remote_code=True, | ||
cache_dir=training_args.cache_dir, | ||
model_max_length=training_args.model_max_length, | ||
padding_side="right", | ||
use_fast=False, | ||
) | ||
# NOTE: if the token_id exceed the vocab_size will cause failing in training process! we need add special config and resize the embedding size! | ||
tokenizer.pad_token = tokenizer.unk_token | ||
print(f"tokens len: {len(tokenizer)}") | ||
model.resize_token_embeddings(len(tokenizer)) | ||
|
||
template_id = model_args.model_name_or_path | ||
data_module = make_supervised_data_module( | ||
tokenizer=tokenizer, | ||
template_id=template_id, | ||
train_ratio=0.98, | ||
data_args=data_args, | ||
) | ||
trainer = Trainer( | ||
model=model, tokenizer=tokenizer, args=training_args, **data_module | ||
) | ||
|
||
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | ||
trainer.train(resume_from_checkpoint=True) | ||
else: | ||
trainer.train() | ||
trainer.save_state() | ||
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
train() |