Skip to content

ludwig-ai/experiments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

experiments

Reproducible benchmark experiment scripts and results for Ludwig

Utilities for experiments are in the utils directory.

  • best_hyperopt_statistics.py fetches from the specified hyperopt_statistics.json file the combined loss and specified metric for the best model found by the hyperparameter search.

Scripts and results for automl experiments are in the automl directory.

  • The heuristics subdirectory contains subdirectories for each dataset used to run extensive hyperparameter searches from which to derive automl heuristics.
  • The validation subdirectory contains subdirectories for each dataset used to validate the derived heuristics.

Each dataset subdirectory contains the following scripts and configuration files, as appropriate:

  • Training

    • Simple train validation of concat model type:
      • Script w/Configuration: train_concat_sanity_laptop.py, config_concat_sanity_laptop.yaml
    • Simple train validation of tabnet model type:
      • Script w/Configuration: train_tabnet_sanity_laptop.py, config_tabnet_sanity_laptop.yaml
    • Simple train validation of transformer model type:
      • Script w/Configuration: train_transf_sanity_laptop.py, config_transf_sanity_laptop.yaml
    • Train validation of best tabnet model configuration found in heuristics search runs
      • Script w/Configuration: train_tabnet_reference_laptop.py, config_tabnet_reference_laptop.yaml
    • Train validation of best tabnet model configuration found in heuristics search runs using updated automatic feature type selection (if impacted)
      • Script w/Configuration: train_tabnet_reference_auto.py, config_tabnet_reference_auto.yaml
  • AutoML

    • Automatically generate configuration for hyperparameter search via create_auto_config API
      • Script: get_auto_train_config.py
      • Output for original feature type selection code: auto_config.json.orig
      • Output for updated feature type selection code: auto_config.json.update
      • Output for updated feature type selection code + automl code w/heuristics: auto_config.json.automl
    • Automatically generate and run configuration for hyperparameter search via auto_train API w/1hr time limit
      • Script: run_auto_train_1hr.py
      • Output: hyperopt_statistics.json.1hr
    • Automatically generate and run configuration for hyperparameter search via auto_train API w/2hr time limit
      • Script: run_auto_train_2hr.py
      • Output: hyperopt_statistics.json.2hr
    • Automatically generate and run configuration for hyperparameter search via auto_train API w/4hr time limit
      • Script: run_auto_train_4hr.py
      • Output: hyperopt_statistics.json.4hr

About

Reproducible benchmark experiments for Ludwig

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages