Skip to content

Mnemosyne: efficient learning with powerful digital flash-cards.

License

Notifications You must be signed in to change notification settings

malloryerik/mnemosyne

 
 

Repository files navigation

Mnemosyne: Optimized Flashcards and Research Project

Linux: Linux build status Windows: Windows build status Coverage Status

Mnemosyne is:

  • a free, open-source, spaced-repetition flashcard program that helps you learn as efficiently as possible.
  • a research project into the nature of long-term memory. If you like, you can help out and upload anomynous data about your learning process (this feature is off by default).

Important features include:

  • Bi-directional syncing between several devices
  • Clients for Windows/Mac/Linux and Android
  • Flashcards with rich content (images, video, audio)
  • Powerful card types
  • Flexible card browser and card selection
  • Visualization to illustrate your learning process
  • Extensive plugin architecture and external scripting
  • Different learning schedulers
  • Webserver for review through browser (does not implement any security features so far)
  • Cramming scheduler to review cards without affecting the regular scheduer
  • Core library that allows you to easily create your own front-end.

You can find a more detailed explanation of the features on the webpage, as well as the general documentation.

Installation of the development version and hacking

If you just want to download the latest Mnemosyne release as a regular user, please see the Download section. If you are interested in running and changing the latest code, please read on.

We use the git version control system and Github to coordinate the development. Please use a search engine to find out how to install git on your operating system. If you are new to git and github, there are many tutorials available on the web. For example, this interactive tutorial.

Working locally with the code

If you want to hack on Mnemosyne and propose your changes for merging later ('pull request'), first create an account on, or log into, Github. Then, fork the project on Github. You now have your own copy of the Mnemosyne repository on Github.

To work with the code, you need to clone your personal Mnemosyne fork on Github fork to your local machine. It's best to setup ssh for Github, but you don't have to. Change to your working directory on the terminal and then clone your repository of Mnemosyne (in this example without ssh):

git clone https://github.com/<your-username>/mnemosyne.git

Let's also make it easy to track the official Mnemosyne repository:

git remote add upstream https://github.com/mnemosyne-proj/mnemosyne.git

It is best to create your own branches for your work:

git checkout -b <branch name>

Whenever you want, you can commit your changes:

git status
git add <files to add>
git commit -v

Sharing your changes

At some point you may want to share your changes with everyone. Before you do so, you should check make sure that you didn't introduce new test failures. Then, you should check if changes were made to the original Mnemosyne repository on Github. Your private fork on Github is not automatically updated with these changes. You can get the most recent changes like this:

git fetch upstream
git checkout master
git merge upstream/master

If there are new changes, your repository now looks like this (each number symbolyses a commit):

your local master branch:  ---1-2-3-4'-5'-6'-7'-8' (new changes from upstream)
                                  |
your local feature branch:        |-4-5-6 (your changes)

Before you push your branch, you should rebase it on master. Rebasing takes all the changes in your branch (in the figure: 4-5-6) and tries to apply them on top of the master branch, so that we end up with a linear history:

your local master branch:  ---1-2-3-4'-5'-6'-7'-8' (new changes from upstream)
                                                |
your local feature branch:                      |-4-5-6 (your changes)

Rebase like this:

git checkout <branch name>
git rebase master

Follow the instructions (git status gives additional information). Once you've successfully rebased your branch, push it to your Github account (we use --force, because we want to overwrite the existing branch on our private Github account):

git push origin --force <branch name>

To create a pull request for your changes, go to the Mnemosyne project page on Github and click on the pull request tab. Click on 'New pull request' and follow the instructions.

Finally, some more background on the whole workflow can be found here.

About the code base

To get an overview of how all the different bits of the library fit together, see the documentation in the code at mnemosyne/libmnemosyne/docs/build/html/index.html. In order to keep the code looking uniform, please following the standard Python style guides PEP8 and PEP257.

Running the development code

You can find instructions for Windows here. The following instructions are valid for Linux and Mac (if you use homebrew or some other package manager).

Runtime requirements

To start working on Mnemosyne, you need at least the following software.

  • Python 3.5 or later
  • PyQt 5.6 or later
  • Matplotlib
  • Easyinstall
  • cheroot 5 or later
  • Webob 1.4 or later
  • pillow
  • For Latex support: the latex and dvipng commands must be available (e.g., TeXLive on Linux, MacTeX on Mac, and MikTeX on Windows).
  • For building the docs: sphinx
  • For running the tests: nose

You can either run a development version of Mnemosyne by using your system-wide Python installation, or by using a virtual environment with virtualenv. If your distribution provides and packages all necessary libraries in a recent enough version, using the system-wide Python install is probably easier and the recommended way.

Using the system-wide python installation

First, install all dependencies with your distribution's package manager. Then, run make from the top-level mnemosyne directory. This will generate all the needed auxiliary files and start Mnemosyne with a separate datadir under dot_mnemosyne2. If you want to use mnemosyne interactively from within a python shell, run python from the top-level mnemosyne directory. You can check if the correct local version was imported by running import mnemosyne; print(mnemosyne.__file__).

Using a local python installation

If your distribution does not provide all required libraries, or if the libraries are too old, create a virtual environment in the top-level directory (virtualenv venv), activate it (source venv/bin/activate) and install all the required dependencies with pip install. Then, follow the steps of the previous paragraph.

Running the test suite

You can always run the test suite:

make test

or:

python3 -m nose tests

Single tests can be run like this:

python3 -m nose tests/<file_name>.py:<class_name>:<method_name>

Nose captures stdout by default. Use the -s switch if you want to print output during the test run.

You can increase the verbosity level with the -v switch.

Add --pdb to the command line to automatically drop into the debugger on errors and failures. If you want to drop into the debugger before a failure, edit the test and add the following code at the exact spot where you want the debugger to be started:

from nose.tools import set_trace; set_trace()

System-wide installation from source

For testing the development version it is not necessary to do a system-wide installation. If you want to do so anyway, here are the instructions.

Linux

Follow the installation instructions from above (install the dependencies, get the source code - either by cloning it from github, or by downloading and extracting the .tar.gz archive). Then, run the following command from within the top-level directory of the repository (which is also the location of this README.md file):

sudo python setup.py install

Depending on your setup, you might need to replace python with python3. To test the installation, change to any other directory and run mnemosyne. For example:

cd ~
mnemosyne

If you run into the issue of non-latin characters not displaying on statistic plots, install ttf-mscorefonts-installer and regenerate the font cache of matplotlib.

Mac

  • Download and install Homebrew (see http://brew.sh)
  • Open the Terminal.
  • Make sure you are using the latest version of Homebrew:
brew update
  • Patch the python3 formula so you'll get python 3.6 and not a later version (pyinstaller still requires python 3.6):
brew uninstall python3
brew edit python3
# replace the file with the contents of https://raw.githubusercontent.com/Homebrew/homebrew-core/e76ed3606c8008d2b8d9636a7e4e6f62cfeb6120/Formula/python3.rb and save it
brew install python3
brew pin python3
  • Install the dependencies for Mnemosyne. You may need to install qt5 or python3 manually to get the correct version.
brew install [email protected] mplayer
pip3 install virtualenv
virtualenv --python=python3 venv
source venv/bin/activate
pip3 install webob tornado matplotlib numpy sip pillow cheroot pyqt5==5.7.1 pyinstaller
  • Build it:
export PYTHON=python3
export QT5DIR=/usr/local/opt/[email protected] # help pyinstaller find the qt5 path
make clean
make macos
  • Test the new application (back up your data directory first!):
open dist/Mnemosyne.app
  • Optionally drag and drop this new app to /Applications.

About

Mnemosyne: efficient learning with powerful digital flash-cards.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 93.0%
  • Java 3.2%
  • C 3.1%
  • Makefile 0.6%
  • QMake 0.1%
  • Roff 0.0%