Long-term Forecasting with TiDE: Time-series Dense Encoder - Unofficial Pytorch Implementation - WIP
make install
make datasets
name | test mae | paper mae | test mse | paper mse |
---|---|---|---|---|
ETTh1 96 | 0.450671 | 0.398 | 0.427044 | 0.375 |
ETTh1 192 | 0.486024 | 0.422 | 0.47277 | 0.412 |
ETTh1 336 | 0.527694 | 0.433 | 0.527147 | 0.435 |
ETTh1 720 | 0.60546 | 0.465 | 0.644379 | 0.454 |
ETTh2 96 | 0.284329 | 0.336 | 0.169457 | 0.27 |
ETTh2 192 | 0.318749 | 0.38 | 0.206157 | 0.332 |
ETTh2 336 | 0.337509 | 0.407 | 0.226434 | 0.36 |
ETTh2 720 | 0.400112 | 0.451 | 0.299051 | 0.419 |
ETTm1 96 | 0.369346 | 0.349 | 0.31828 | 0.306 |
ETTm1 192 | 0.399559 | 0.366 | 0.365496 | 0.335 |
ETTm1 336 | 0.429598 | 0.384 | 0.408837 | 0.364 |
ETTm1 720 | 0.470707 | 0.413 | 0.45856 | 0.413 |
ETTm2 96 | 0.225635 | 0.251 | 0.111662 | 0.161 |
ETTm2 192 | 0.248651 | 0.289 | 0.136481 | 0.215 |
ETTm2 336 | 0.271058 | 0.326 | 0.161007 | 0.267 |
electricity 96 | 0.236805 | 0.229 | 0.136566 | 0.132 |
electricity 192 | 0.251745 | 0.243 | 0.151502 | 0.147 |
electricity 336 | 0.283281 | 0.261 | 0.176307 | 0.161 |
electricity 720 | 0.307335 | 0.294 | 0.205603 | 0.196 |
traffic 96 | 0.280911 | 0.253 | 0.438414 | 0.336 |
traffic 192 | 0.284845 | 0.257 | 0.434229 | 0.346 |
traffic 336 | 0.290309 | 0.26 | 0.498862 | 0.355 |
traffic 720 | 0.309352 | 0.273 | 0.50618 | 0.386 |
weather 96 | 0.225352 | 0.222 | 0.161776 | 0.166 |
weather 192 | 0.256947 | 0.263 | 0.192686 | 0.209 |
weather 336 | 0.289164 | 0.301 | 0.224491 | 0.254 |
weather 720 | 0.330308 | 0.34 | 0.266972 | 0.313 |
- ➕➖ Metrics reproducibility
- some issues with traffic and etth1
- REVIN integration