Skip to content

Javascript client library for the Qdrant vector search engine

License

Notifications You must be signed in to change notification settings

maxdotio/node-qdrant

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

node-qdrant

Javascript client library for the Qdrant vector search engine (https://qdrant.tech)

Install

npm install qdrant

Then you can use it in your project:

import { Qdrant } from "qdrant"
const qdrant = new Qdrant("http://localhost:6333/");

Quick Start

Here is a basic example that creates a client connection and adds a new collection pretty_colors to Qdrant. It assumes the Qdrant docker is running at localhost:6333. This quick start is also in the examples folder in this repository.

import { Qdrant } from "qdrant"

const qdrant = new Qdrant("http://localhost:6333/");

const name = "pretty_colors";

/// -------------------------------------------------------------------------
/// Create the new collection with the name and schema
const schema = {
    "name":name,
    "vector_size": 3,
    "distance": "Cosine"
};
let create_result = await qdrant.create_collection(name,schema);
if (create_result.err) {
    console.error(`ERROR:  Couldn't create collection "${name}"!`);
    console.error(create_result.err);
} else {
    console.log(`Success! Collection "${name} created!"`);
    console.log(create_result.response);
}

/// -------------------------------------------------------------------------
/// Show the collection info as it exists in the Qdrant engine
let collection_result = await qdrant.get_collection(name);
if (collection_result.err) {
    console.error(`ERROR:  Couldn't access collection "${name}"!`);
    console.error(collection_result.err);
} else {
    console.log(`Collection "${name} found!"`);
    console.log(collection_result.response);
}

/// -------------------------------------------------------------------------
/// Upload some points - just five RGB colors
let points = [
    { "id": 1, "payload": {"color": "red"}, "vector": [0.9, 0.1, 0.1] },
    { "id": 2, "payload": {"color": "green"}, "vector": [0.1, 0.9, 0.1] },
    { "id": 3, "payload": {"color": "blue"}, "vector": [0.1, 0.1, 0.9] },
    { "id": 4, "payload": {"color": "purple"}, "vector": [1.0, 0.1, 0.9] },
    { "id": 5, "payload": {"color": "cyan"}, "vector": [0.1, 0.9, 0.8] }
]
let upload_result = await qdrant.upload_points(name,points);
if (upload_result.err) {
    console.error(`ERROR:  Couldn't upload to "${name}"!`);
    console.error(upload_result.err);
} else {
    console.log(`Uploaded to "${name} successfully!"`);
    console.log(upload_result.response);
}

/// -------------------------------------------------------------------------
/// Search the closest color (k=1)
let purplish = [0.8,0.1,0.7];
let search_result = await qdrant.search_collection(name,purplish,1);
if (search_result.err) {
    console.error(`ERROR: Couldn't search ${purplish}`);
    console.error(search_result.err);
} else {
    console.log(`Search results for ${purplish}`);
    console.log(search_result.response);
}


/// -------------------------------------------------------------------------
/// Filtered search the closest color
let filter = {
    "must": [
        { "key": "color", "match": { "keyword": "cyan" } }
    ]
}
let filtered_result = await qdrant.search_collection(name,purplish,1,128,filter);
if (filtered_result.err) {
    console.error(`ERROR: Couldn't search ${purplish} with ${filter}`);
    console.error(filtered_result.err);
} else {
    console.log(`Search results for filtered ${purplish}`);
    console.log(filtered_result.response);
}

/// -------------------------------------------------------------------------
/// Delete the collection
let delete_result = await qdrant.delete_collection(name);
if (delete_result.err) {
    console.error(`ERROR:  Couldn't delete "${name}"!`);
    console.error(delete_result.err);
} else {
    console.log(`Deleted "${name} successfully!"`);
    console.log(delete_result.response);
}

Conventions

All methods must be awaited, and return a QdrantResponse object - which only has two properties: err and response.

Always check for presence of err. If err is not null, then the response might not be valid.

Methods

With an qdrant object, just await one of the following methods to interact with the engine and its collections:

create_collection(name,body)

Creates a new collection with name and the schema specified in body

get_collection(name)

Gets the collection information for name

delete_collection(name)

Deletes a collection with name

upload_points(name,points)

Uploads vectors and payloads in points to the collection name

search_collection(name,vector,k,ef,filter)

Searches the collection with a vector, to get the top k most similar points (default 5), using HNSW ef (default is 128), and an optional payload filter.

query_collection(name,query)

Searches the collection with a query that must be fully defined by the caller.

retrieve_points(name,query)

Gets all the points by the array of ids provided

About

Javascript client library for the Qdrant vector search engine

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published