Javascript client library for the Qdrant vector search engine (https://qdrant.tech)
npm install qdrant
Then you can use it in your project:
import { Qdrant } from "qdrant"
const qdrant = new Qdrant("http://localhost:6333/");
Here is a basic example that creates a client connection and adds a new collection pretty_colors
to Qdrant. It assumes the Qdrant docker is running at localhost:6333. This quick start is also in the examples folder in this repository.
import { Qdrant } from "qdrant"
const qdrant = new Qdrant("http://localhost:6333/");
const name = "pretty_colors";
/// -------------------------------------------------------------------------
/// Create the new collection with the name and schema
const schema = {
"name":name,
"vector_size": 3,
"distance": "Cosine"
};
let create_result = await qdrant.create_collection(name,schema);
if (create_result.err) {
console.error(`ERROR: Couldn't create collection "${name}"!`);
console.error(create_result.err);
} else {
console.log(`Success! Collection "${name} created!"`);
console.log(create_result.response);
}
/// -------------------------------------------------------------------------
/// Show the collection info as it exists in the Qdrant engine
let collection_result = await qdrant.get_collection(name);
if (collection_result.err) {
console.error(`ERROR: Couldn't access collection "${name}"!`);
console.error(collection_result.err);
} else {
console.log(`Collection "${name} found!"`);
console.log(collection_result.response);
}
/// -------------------------------------------------------------------------
/// Upload some points - just five RGB colors
let points = [
{ "id": 1, "payload": {"color": "red"}, "vector": [0.9, 0.1, 0.1] },
{ "id": 2, "payload": {"color": "green"}, "vector": [0.1, 0.9, 0.1] },
{ "id": 3, "payload": {"color": "blue"}, "vector": [0.1, 0.1, 0.9] },
{ "id": 4, "payload": {"color": "purple"}, "vector": [1.0, 0.1, 0.9] },
{ "id": 5, "payload": {"color": "cyan"}, "vector": [0.1, 0.9, 0.8] }
]
let upload_result = await qdrant.upload_points(name,points);
if (upload_result.err) {
console.error(`ERROR: Couldn't upload to "${name}"!`);
console.error(upload_result.err);
} else {
console.log(`Uploaded to "${name} successfully!"`);
console.log(upload_result.response);
}
/// -------------------------------------------------------------------------
/// Search the closest color (k=1)
let purplish = [0.8,0.1,0.7];
let search_result = await qdrant.search_collection(name,purplish,1);
if (search_result.err) {
console.error(`ERROR: Couldn't search ${purplish}`);
console.error(search_result.err);
} else {
console.log(`Search results for ${purplish}`);
console.log(search_result.response);
}
/// -------------------------------------------------------------------------
/// Filtered search the closest color
let filter = {
"must": [
{ "key": "color", "match": { "keyword": "cyan" } }
]
}
let filtered_result = await qdrant.search_collection(name,purplish,1,128,filter);
if (filtered_result.err) {
console.error(`ERROR: Couldn't search ${purplish} with ${filter}`);
console.error(filtered_result.err);
} else {
console.log(`Search results for filtered ${purplish}`);
console.log(filtered_result.response);
}
/// -------------------------------------------------------------------------
/// Delete the collection
let delete_result = await qdrant.delete_collection(name);
if (delete_result.err) {
console.error(`ERROR: Couldn't delete "${name}"!`);
console.error(delete_result.err);
} else {
console.log(`Deleted "${name} successfully!"`);
console.log(delete_result.response);
}
All methods must be awaited, and return a QdrantResponse object - which only has two properties: err
and response
.
Always check for presence of err
. If err
is not null, then the response might not be valid.
With an qdrant object, just await one of the following methods to interact with the engine and its collections:
Creates a new collection with name
and the schema specified in body
Gets the collection information for name
Deletes a collection with name
Uploads vectors and payloads in points
to the collection name
Searches the collection with a vector
, to get the top k
most similar points (default 5), using HNSW ef
(default is 128), and an optional payload filter.
Searches the collection with a query
that must be fully defined by the caller.
Gets all the points by the array of ids provided