Skip to content

Antares: an automatic engine for multi-platform kernel generation and optimization. Supporting CPU, CUDA, ROCm, DirectX12, GraphCore, SYCL for CPU/GPU, OpenCL for AMD/NVIDIA, Android CPU/GPU backends.

License

Notifications You must be signed in to change notification settings

microsoft/antares

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoRT: the Next Generation of Antares.

AutoRT for Device Runtime:

AutoRT is a compiler solution that helps runtime users to invent, benchmark and optimize operators for Pytorch using your own accelerators:

  • AutoRT can be as a benchmark utility for device performance testing and profiling.
  • AutoRT can also generate Pytorch2 of your device to accelerate standard Pytorch applications (e.g. DirectX).
  • Additionally, AutoRT futher helps to construct custom defined / fused operators that are beyond the built-in functions of Pytorch.
  • AutoRT for Windows DirectX 12 / Linux CUDA has experimental version released.
  • Click here to suggest more platforms (e.g. Pytorch2 for Windows ROCm / OpenCL / SYCL / Apple Metal / ..) you would like AutoRT to support in the follow-up releases.

Archtecture of AutoRT as a Backend for Pytorch 2.0:

Workflow of Custom Operations from Antares IR to Different Backends:

- Quick Installation of AutoRT:

Installation

Platform OS Requirement Python Requirement Download Link
DirectX 12 (x86_64) Windows >= 10 / Microsoft XBox Python3.12 (Windows) python3.12 -m pip install https://github.com/microsoft/antares/releases/download/v0.9.6/autort-0.9.6.3+directx.win-cp312-cp312-win_amd64.whl
Vulkan 1.3 (x86_64) Ubuntu >= 18.04 Python3.12 (Linux) python3.12 -m pip install https://github.com/microsoft/antares/releases/download/v0.9.6/autort-0.9.6.3+vulkan.linux-cp312-cp312-manylinux1_x86_64.whl
CUDA >= 11.0 (x86_64) Windows >= 10 / Ubuntu >= 20.04 Python 3.10/3.12 python3 -m pip install https://github.com/microsoft/antares/releases/download/v0.9.6/autort-0.9.6.3.4+cuda.zip
CUDA >= 12.0 (aarch64) Ubuntu >= 22.04 Python 3.10/3.12 python3 -m pip install https://github.com/microsoft/antares/releases/download/v0.9.6/autort-0.9.6.3.4+cuda.zip
.. .. .. .. (More coming soon) ..

For CUDA, here are several Ubuntu >= 20.04 equivalent containers below:

  • Docker Image: nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
  • Docker Image: nvidia/cuda:12.0.1-cudnn8-devel-ubuntu20.04
  • Docker Image: nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
  • Docker Image: nvidia/cuda:12.0.1-cudnn8-devel-ubuntu18.04
  • ..

- Playground 1 - Benchmark your Windows Device:

Quick Test 1: Benchmark to evaluate device memory bandwidth over DirectX 12.

$ python.exe -m autort.benchmark.memtest
  ...
  [1000/1000] AutoRT Device Memory Bandwidth: (Actual ~= 468.12 GB/s) (Theoretical ~= 561.75 GB/s)

Quick Test 2: Benchmark to evaluate device FP32 performance over DirectX 12.

$ python.exe -m autort.benchmark.fp32test
  ...
  [5000/5000] AutoRT FP32 TFLOPS: (Actual ~= 9.84 TFLOPS) (Theoretical ~= 10.93 TFLOPS)

$ python.exe -m autort.benchmark.mmtest
  ...

Quick Test 3: Benchmark to evaluate device copy time.

$ python.exe -m autort.benchmark.copytest
  ...

Quick Test 4: Benchmark to evaluate device launch time.

$ python.exe -m autort.benchmark.launchtest
  ...

- Playground 2 - Running Pytorch2 over DirectX:

Quick Test 1: Create "custom operator" of your own in Pytorch 2.

  • Style-1: "AutoRT API Style" Custom Operator Generation:
>> import torch, autort
>> data = torch.arange(0, 10, dtype=torch.float32, device=autort.device())

>> f = autort.export(ir="sigmoid_f32[N] = 1 - 1 / (1 + data[N].call(strs.exp))", inputs=["data=float32[N:4096000]"], config="tune:5")
>> print(f(data))
tensor([0.5000, 0.7311, 0.8808, 0.9526, 0.9820, 0.9933, 0.9975, 0.9991, 0.9997, 0.9999])
>> print(autort.ops.sigmoid_f32(data))
tensor([0.5000, 0.7311, 0.8808, 0.9526, 0.9820, 0.9933, 0.9975, 0.9991, 0.9997, 0.9999])
  • Style-2: "Command Line Style" Custom Operator Generation:
# Fist, create a custom sigmoid activation operator with 5 tuning steps:
$ autort --ir "sigmoid_f32[N] = 1 - 1 / (1 + data[N].call(strs.exp))" -i data=float32[N:4096000] -c "tune:5"

# Then, use it in Pytorch 2 session:
$ python.exe
>> import torch, autort
>>
>> data = torch.arange(0, 10, dtype=torch.float32, device=autort.device())
>> output = autort.ops.sigmoid_f32(data)
>> print(output)
tensor([0.5000, 0.7311, 0.8808, 0.9526, 0.9820, 0.9933, 0.9975, 0.9991, 0.9997,
        0.9999])
>> output = torch.nn.functional.sigmoid(data)
>> print(output)
tensor([0.5000, 0.7311, 0.8808, 0.9526, 0.9820, 0.9933, 0.9975, 0.9991, 0.9997,
        0.9999])

Quick Test 2: Demo of Sorting/MNIST/LLama over Pytorch2:

$ python.exe -m autort.examples.01_sort_even_first

Input : tensor([101, 102, 208,  99,   1, 127,  62,   8, 336, 336], dtype=torch.int32)
  (is_even) tensor([False,  True,  True, False, False, False,  True,  True,  True,  True])

Output: tensor([102, 208,  62,   8, 336, 336, 101,  99,   1, 127], dtype=torch.int32)
  (is_even) tensor([ True,  True,  True,  True,  True,  True, False, False, False, False])
$ python.exe -m autort.examples.02_mnist
  ...
  step = 800, loss = 0.5159, accuracy = 87.50 %
  step = 900, loss = 0.5511, accuracy = 84.38 %
  step = 1000, loss = 0.2616, accuracy = 93.75 %
  ...
$ python.exe -m autort.examples.03_llama_tiny

What is that?"
"That is the sun," her mom said. "It gives us heat."
The little girl was amazed. She had never seen the heat before.
"Can we go outside and feel the sun?" she asked.
"Yes," her mother said.
...
$ python.exe -m autort.examples.05_llama2_7b_int4

How large is Atlantic Ocean?

The Atlantic Ocean is the second largest ocean on Earth, covering approximately 20% of the Earth's surface. ...
$ python.exe -m autort.examples.06_diffuser_no_opt

...
Image converted from `./samurai_nn.png` to `samurai_nn_diffused.png`..

If you like it, welcome to report issues or donate stars which can encourage AutoRT to support more backends, more OS-type and more documentations. See More Information about Microsoft Contributing and Trademarks.

About

Antares: an automatic engine for multi-platform kernel generation and optimization. Supporting CPU, CUDA, ROCm, DirectX12, GraphCore, SYCL for CPU/GPU, OpenCL for AMD/NVIDIA, Android CPU/GPU backends.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published