Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Propagate NaNs in the CPU min and max operators #21492

Merged
merged 6 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 10 additions & 8 deletions onnxruntime/core/providers/cpu/math/element_wise_ops.cc
Original file line number Diff line number Diff line change
Expand Up @@ -705,7 +705,7 @@ Status Min_6<float>::Compute(OpKernelContext* ctx) const {
for (int index = 1; index < inputCount; index++) {
auto& data_n = *ctx->Input<Tensor>(index);
ORT_ENFORCE(data_n.Shape() == shape, "All inputs must have the same shape");
min = min.array().min(EigenMap<float>(data_n).array());
min = min.array().template min<Eigen::PropagateNaN>(EigenMap<float>(data_n).array());
}

return Status::OK();
Expand All @@ -721,15 +721,16 @@ struct Min_8::ComputeImpl {
ProcessBroadcastSpanFuncs funcs{
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput1<T>().array().min(per_iter_bh.ScalarInput0<T>());
per_iter_bh.EigenInput1<T>().array().template min<Eigen::PropagateNaN>(per_iter_bh.ScalarInput0<T>());
},
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput0<T>().array().min(per_iter_bh.ScalarInput1<T>());
per_iter_bh.EigenInput0<T>().array().template min<Eigen::PropagateNaN>(per_iter_bh.ScalarInput1<T>());
},
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput0<T>().array().min(per_iter_bh.EigenInput1<T>().array());
per_iter_bh.EigenInput0<T>().array().template min<Eigen::PropagateNaN>(
per_iter_bh.EigenInput1<T>().array());
}};

int input_count = inst.Node().InputArgCount().front();
Expand Down Expand Up @@ -827,7 +828,7 @@ Status Max_6<float>::Compute(OpKernelContext* ctx) const {
for (int index = 1; index < inputCount; index++) {
auto& data_n = *ctx->Input<Tensor>(index);
ORT_ENFORCE(data_n.Shape() == shape, "All inputs must have the same shape");
max = max.array().max(EigenMap<float>(data_n).array());
max = max.array().template max<Eigen::PropagateNaN>(EigenMap<float>(data_n).array());
}

return Status::OK();
Expand All @@ -843,15 +844,16 @@ struct Max_8::ComputeImpl {
ProcessBroadcastSpanFuncs funcs{
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput1<T>().array().max(per_iter_bh.ScalarInput0<T>());
per_iter_bh.EigenInput1<T>().array().template max<Eigen::PropagateNaN>(per_iter_bh.ScalarInput0<T>());
},
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput0<T>().array().max(per_iter_bh.ScalarInput1<T>());
per_iter_bh.EigenInput0<T>().array().template max<Eigen::PropagateNaN>(per_iter_bh.ScalarInput1<T>());
},
[](BroadcastHelper& per_iter_bh) {
per_iter_bh.OutputEigen<T>() =
per_iter_bh.EigenInput0<T>().array().max(per_iter_bh.EigenInput1<T>().array());
per_iter_bh.EigenInput0<T>().array().template max<Eigen::PropagateNaN>(
per_iter_bh.EigenInput1<T>().array());
}};

int input_count = inst.Node().InputArgCount().front();
Expand Down
2 changes: 1 addition & 1 deletion onnxruntime/test/providers/checkers.cc
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,7 @@ struct TensorCheck<MLFloat16> {

for (int64_t i = 0; i < size; ++i) {
if (std::isnan(f_expected[i])) {
EXPECT_TRUE(std::isnan(f_expected[i])) << "Expected NaN. i:" << i;
EXPECT_TRUE(std::isnan(f_actual[i])) << "Expected NaN. i:" << i;
} else if (std::isinf(f_expected[i])) { // Test infinity for equality
EXPECT_EQ(f_expected[i], f_actual[i]) << "Expected infinity. i:" << i;
} else {
Expand Down
188 changes: 176 additions & 12 deletions onnxruntime/test/providers/cpu/math/element_wise_ops_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1553,6 +1553,47 @@ TEST(MathOpTest, Min_12_Float_Nan) {
}
}

TEST(MathOpTest, Min_12_Float_Nan_with_scalar) {
OpTester test("Min", 12);
test.AddInput<float>("data_1", {3, 1},
{std::numeric_limits<float>::quiet_NaN(), -0.5f, 0.5f});
test.AddInput<float>("data_2", {1}, {0.25f});
test.AddOutput<float>("min", {3, 1},
{std::numeric_limits<float>::quiet_NaN(), -0.5f, 0.25f});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Min_12_Float_with_scalar_Nan) {
OpTester test("Min", 12);
test.AddInput<float>("data_1", {2, 2},
{0.25f, -0.25f, -0.5f, 0.5f});
test.AddInput<float>("data_2", {1}, {std::numeric_limits<float>::quiet_NaN()});
test.AddOutput<float>("min", {2, 2},
{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN()});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Min_12_Double) {
OpTester test("Min", 12);
test.AddInput<double>("data_0", {1, 3},
Expand Down Expand Up @@ -1586,12 +1627,53 @@ TEST(MathOpTest, Min_12_Double_Nan) {
std::numeric_limits<double>::quiet_NaN(),
-1.0, -1.0, -2.0,
0.5, 0.0, 1.0});
if (nullptr != DefaultCpuExecutionProvider().get()) {
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider().get()) {
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Min_12_Double_Nan_with_scalar) {
OpTester test("Min", 12);
test.AddInput<double>("data_1", {3, 1},
{std::numeric_limits<double>::quiet_NaN(), -0.5, 0.5});
test.AddInput<double>("data_2", {1}, {0.25});
test.AddOutput<double>("min", {3, 1},
{std::numeric_limits<double>::quiet_NaN(), -0.5, 0.25});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Min_12_Double_with_scalar_Nan) {
OpTester test("Min", 12);
test.AddInput<double>("data_1", {2, 2},
{0.25, -0.25, -0.5, 0.5});
test.AddInput<double>("data_2", {1}, {std::numeric_limits<double>::quiet_NaN()});
test.AddOutput<double>("min", {2, 2},
{std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN()});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
Expand Down Expand Up @@ -1666,7 +1748,7 @@ TEST(MathOpTest, Min_12_UInt64) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Min_12_MLFLoat16) {
TEST(MathOpTest, Min_12_MLFloat16) {
OpTester test("Min", 12);
test.AddInput<MLFloat16>("data_0", {1, 3},
MakeMLFloat16({1.f, 1.f, 1.f}));
Expand All @@ -1679,7 +1761,7 @@ TEST(MathOpTest, Min_12_MLFLoat16) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Min_12_MLFLoat16_Scalar0) {
TEST(MathOpTest, Min_12_MLFloat16_Scalar0) {
OpTester test("Min", 12);
test.AddInput<MLFloat16>("data_0", {},
MakeMLFloat16({-10.f}));
Expand All @@ -1692,7 +1774,7 @@ TEST(MathOpTest, Min_12_MLFLoat16_Scalar0) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Min_12_MLFLoat16_Scalar1) {
TEST(MathOpTest, Min_12_MLFloat16_Scalar1) {
OpTester test("Min", 12);
test.AddInput<MLFloat16>("data_0", {1, 3},
MakeMLFloat16({2.f, 3.f, 4.f}));
Expand Down Expand Up @@ -1809,12 +1891,53 @@ TEST(MathOpTest, Max_12_Float_Nan) {
std::numeric_limits<float>::quiet_NaN(),
-0.5f, 0.0f, -1.0f,
1.0f, 1.0f, 2.0f});
if (nullptr != DefaultCpuExecutionProvider().get()) {
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider().get()) {
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Max_12_Float_Nan_with_scalar) {
OpTester test("Max", 12);
test.AddInput<float>("data_1", {3, 1},
{std::numeric_limits<float>::quiet_NaN(), -0.5f, 0.5f});
test.AddInput<float>("data_2", {1}, {0.25f});
test.AddOutput<float>("max", {3, 1},
{std::numeric_limits<float>::quiet_NaN(), 0.25f, 0.5f});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Max_12_Float_with_scalar_Nan) {
OpTester test("Max", 12);
test.AddInput<float>("data_1", {2, 2},
{0.25f, -0.25f, -0.5f, 0.5f});
test.AddInput<float>("data_2", {1}, {std::numeric_limits<float>::quiet_NaN()});
test.AddOutput<float>("max", {2, 2},
{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN()});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
Expand Down Expand Up @@ -1854,12 +1977,53 @@ TEST(MathOpTest, Max_12_Double_Nan) {
std::numeric_limits<double>::quiet_NaN(),
-0.5, 0.0, -1.0,
1.0, 1.0, 2.0});
if (nullptr != DefaultCpuExecutionProvider().get()) {
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider().get()) {
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Max_12_Double_Nan_with_scalar) {
OpTester test("Max", 12);
test.AddInput<double>("data_1", {3, 1},
{std::numeric_limits<double>::quiet_NaN(), -0.5, 0.5});
test.AddInput<double>("data_2", {1}, {0.25});
test.AddOutput<double>("max", {3, 1},
{std::numeric_limits<double>::quiet_NaN(), 0.25, 0.5});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
}

TEST(MathOpTest, Max_12_Double_with_scalar_Nan) {
OpTester test("Max", 12);
test.AddInput<double>("data_1", {2, 2},
{0.25, -0.25, -0.5, 0.5});
test.AddInput<double>("data_2", {1}, {std::numeric_limits<double>::quiet_NaN()});
test.AddOutput<double>("max", {2, 2},
{std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::quiet_NaN()});
if (nullptr != DefaultCpuExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCpuExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
}
if (nullptr != DefaultCudaExecutionProvider()) {
std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {}, nullptr, &execution_providers);
Expand Down Expand Up @@ -1934,7 +2098,7 @@ TEST(MathOpTest, Max_12_UInt64) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Max_12_MLFLoat16) {
TEST(MathOpTest, Max_12_MLFloat16) {
OpTester test("Max", 12);
test.AddInput<MLFloat16>("data_0", {1, 3},
MakeMLFloat16({-1.f, -1.f, -1.f}));
Expand All @@ -1947,7 +2111,7 @@ TEST(MathOpTest, Max_12_MLFLoat16) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Max_12_MLFLoat16_Scalar0) {
TEST(MathOpTest, Max_12_MLFloat16_Scalar0) {
OpTester test("Max", 12);
test.AddInput<MLFloat16>("data_0", {},
MakeMLFloat16({-1.f}));
Expand All @@ -1960,7 +2124,7 @@ TEST(MathOpTest, Max_12_MLFLoat16_Scalar0) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); // TensorRT: Input batch size is inconsistent
}

TEST(MathOpTest, Max_12_MLFLoat16_Scalar1) {
TEST(MathOpTest, Max_12_MLFloat16_Scalar1) {
OpTester test("Max", 12);
test.AddInput<MLFloat16>("data_0", {1, 3},
MakeMLFloat16({-1.f, -2.f, -3.f}));
Expand Down
Loading