-
Notifications
You must be signed in to change notification settings - Fork 325
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add hybrid_search for MilvusClient (#2259)
Signed-off-by: zhenshan.cao <[email protected]>
- Loading branch information
Showing
3 changed files
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
DataType, | ||
AnnSearchRequest, RRFRanker, WeightedRanker, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 3000, 8 | ||
|
||
collection_name = "hello_milvus" | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
|
||
schema = milvus_client.create_schema(auto_id=False, description="hello_milvus is the simplest demo to introduce the APIs") | ||
schema.add_field("pk", DataType.VARCHAR, is_primary=True, max_length=100) | ||
schema.add_field("random", DataType.DOUBLE) | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
schema.add_field("embeddings2", DataType.FLOAT_VECTOR, dim=dim) | ||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index(field_name = "embeddings", index_type = "IVF_FLAT", metric_type="L2", nlist=128) | ||
index_params.add_index(field_name = "embeddings2",index_type = "IVF_FLAT", metric_type="L2", nlist=128) | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
|
||
milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong") | ||
|
||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
rng.random((num_entities, dim)), # field embeddings2, supports numpy.ndarray and list | ||
] | ||
|
||
rows = [ {"pk": entities[0][i], "random": entities[1][i], "embeddings": entities[2][i], "embeddings2": entities[3][i]} for i in range (num_entities)] | ||
|
||
insert_result = milvus_client.insert(collection_name, rows) | ||
|
||
|
||
print(fmt.format("Start loading")) | ||
milvus_client.load_collection(collection_name) | ||
|
||
field_names = ["embeddings", "embeddings2"] | ||
field_names = ["embeddings"] | ||
|
||
req_list = [] | ||
nq = 1 | ||
default_limit = 5 | ||
vectors_to_search = [] | ||
|
||
for i in range(len(field_names)): | ||
# 4. generate search data | ||
vectors_to_search = rng.random((nq, dim)) | ||
search_param = { | ||
"data": vectors_to_search, | ||
"anns_field": field_names[i], | ||
"param": {"metric_type": "L2"}, | ||
"limit": default_limit, | ||
"expr": "random > 0.5"} | ||
req = AnnSearchRequest(**search_param) | ||
req_list.append(req) | ||
|
||
print("rank by RRFRanker") | ||
hybrid_res = milvus_client.hybrid_search(collection_name, req_list, RRFRanker(), default_limit, output_fields=["random"]) | ||
for hits in hybrid_res: | ||
for hit in hits: | ||
print(f" hybrid search hit: {hit}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters