Skip to content

Commit

Permalink
fix: improve README documentation (#151)
Browse files Browse the repository at this point in the history
* Improve Readme Formatting
* Grammar and Technical Fixes

Replaced `Cinit` with `C` because it's obvious what `C = C + A` means in programming 😉
Fixed Inplace Operations comments (some math equations were missing)
Fixed Error in Math Operations `absolute` comment
Improved `Manipulation of the matrix` comments
Fixed missing var in `Instantiation of matrix` comment
separated `inverse` sections
converted `b` in `inverse` section to `B` since it's a matrix and should be declared using Capital letters
  • Loading branch information
ShahriarKh authored Jun 29, 2022
1 parent 5f517e6 commit bb1a8cb
Showing 1 changed file with 111 additions and 100 deletions.
211 changes: 111 additions & 100 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,78 +53,84 @@ var A = new Matrix([
[1, 1],
[2, 2],
]);

var B = new Matrix([
[3, 3],
[1, 1],
]);

var C = new Matrix([
[3, 3],
[1, 1],
]);
```

#### Operations
```js
const addition = Matrix.add(A, B); // addition = Matrix [[4, 4], [3, 3], rows: 2, columns: 2]
const subtraction = Matrix.sub(A, B); // subtraction = Matrix [[-2, -2], [1, 1], rows: 2, columns: 2]
const multiplication = A.mmul(B); // multiplication = Matrix [[4, 4], [8, 8], rows: 2, columns: 2]
const mulByNumber = Matrix.mul(A, 10); // mulByNumber = Matrix [[10, 10], [20, 20], rows: 2, columns: 2]
const divByNumber = Matrix.div(A, 10); // divByNumber = Matrix [[0.1, 0.1], [0.2, 0.2], rows: 2, columns: 2]
const modulo = Matrix.mod(B, 2); // modulo = Matrix [[1, 1], [1, 1], rows: 2, columns: 2]
const maxMatrix = Matrix.max(A, B); // max = Matrix [[3, 3], [2, 2], rows: 2, columns: 2]
const minMatrix = Matrix.min(A, B); // max = Matrix [[1, 1], [1, 1], rows: 2, columns: 2]
```

#### Inplace Operations
```js
C.add(A); // => C = C + A
C.sub(A); // => C = C - A
C.mul(10); // => C = 10 * C
C.div(10); // => C = C / 10
C.mod(2); // => C = C % 2
```

// ============================
// Operations with the matrix :
// =============================

// operations :
const addition = Matrix.add(A, B); // addition = Matrix [[4, 4], [3, 3], rows: 2, columns: 2]
const subtraction = Matrix.sub(A, B); // subtraction = Matrix [[-2, -2], [1, 1], rows: 2, columns: 2]
const multiplication = A.mmul(B); // multiplication = Matrix [[4, 4], [8, 8], rows: 2, columns: 2]
const mulByNumber = Matrix.mul(A, 10); // mulByNumber = Matrix [[10, 10], [20, 20], rows: 2, columns: 2]
const divByNumber = Matrix.div(A, 10); // divByNumber = Matrix [[0.1, 0.1], [0.2, 0.2], rows: 2, columns: 2]
const modulo = Matrix.mod(B, 2); // modulo = Matrix [[ 1, 1], [1, 1], rows: 2, columns: 2]
const maxMatrix = Matrix.max(A, B); // max = Matrix [[3, 3], [2, 2], rows: 2, columns: 2]
const minMatrix = Matrix.min(A, B); // max = Matrix [[1, 1], [1, 1], rows: 2, columns: 2]

// Inplace operations : (consider that Cinit = C before all the operations below)
C.add(A); // => C = Cinit + A
C.sub(A); // => C = Cinit
C.mul(10); // => C = 10 * Cinit
C.div(10); // => C = Cinit
C.mod(2); // => C = Cinit % 2

// Standard Math operations : (abs, cos, round, etc.)
#### Math Operations
```js
// Standard Math operations: (abs, cos, round, etc.)
var A = new Matrix([
[1, 1],
[ 1, 1],
[-1, -1],
]);
var exponential = Matrix.exp(A); // exponential = Matrix [[Math.exp(1), Math.exp(1)], [Math.exp(-1), Math.exp(-1)], rows: 2, columns: 2].
var cosinus = Matrix.cos(A); // cosinus = Matrix [[Math.cos(1), Math.cos(1)], [Math.cos(-1), Math.cos(-1)], rows: 2, columns: 2].
var absolute = Matrix.abs(A); // expon = absolute [[1, 1], [1, 1], rows: 2, columns: 2].
// you can use 'abs', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cbrt', 'ceil', 'clz32', 'cos', 'cosh', 'exp', 'expm1', 'floor', 'fround', 'log', 'log1p', 'log10', 'log2', 'round', 'sign', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc'
// Note : you can do it inplace too as A.abs()

// ============================
// Manipulation of the matrix :
// =============================

var numberRows = A.rows; // A has 2 rows
var numberCols = A.columns; // A has 2 columns
var firstValue = A.get(0, 0); // get(rows, columns)
var numberElements = A.size; // 2 * 2 = 4 elements
var isRow = A.isRowVector(); // false because A has more that 1 row
var isColumn = A.isColumnVector(); // false because A has more that 1 column
var isSquare = A.isSquare(); // true, because A is 2 * 2 matrix
var isSym = A.isSymmetric(); // false, because A is not symmetric
// remember : A = Matrix [[1, 1], [-1, -1], rows: 2, columns: 2]
A.set(1, 0, 10); // A = Matrix [[1, 1], [10, -1], rows: 2, columns: 2]. We have change the second row and the first column
var diag = A.diag(); // diag = [1, -1], i.e values in the diagonal.
var m = A.mean(); // m = 2.75
var product = A.prod(); // product = -10, i.e product of all values of the matrix
var norm = A.norm(); // norm = 10.14889156509222, i.e Frobenius norm of the matrix
var transpose = A.transpose(); // transpose = Matrix [[1, 10], [1, -1], rows: 2, columns: 2]

// ============================
// Instantiation of matrix :
// =============================

var exponential = Matrix.exp(A); // exponential = Matrix [[Math.exp(1), Math.exp(1)], [Math.exp(-1), Math.exp(-1)], rows: 2, columns: 2].
var cosinus = Matrix.cos(A); // cosinus = Matrix [[Math.cos(1), Math.cos(1)], [Math.cos(-1), Math.cos(-1)], rows: 2, columns: 2].
var absolute = Matrix.abs(A); // absolute = Matrix [[1, 1], [1, 1], rows: 2, columns: 2].
// Note: you can do it inplace too as A.abs()
```
Available Methods:
```js
abs, acos, acosh, asin, asinh, atan, atanh, cbrt, ceil, clz32, cos, cosh, exp, expm1, floor, fround, log, log1p, log10, log2, round, sign, sin, sinh, sqrt, tan, tanh, trunc
```
#### Manipulation of the matrix
```js
// remember: A = Matrix [[1, 1], [-1, -1], rows: 2, columns: 2]

var numberRows = A.rows; // A has 2 rows
var numberCols = A.columns; // A has 2 columns
var firstValue = A.get(0, 0); // get(rows, columns)
var numberElements = A.size; // 2 * 2 = 4 elements
var isRow = A.isRowVector(); // false because A has more than 1 row
var isColumn = A.isColumnVector(); // false because A has more than 1 column
var isSquare = A.isSquare(); // true, because A is 2 * 2 matrix
var isSym = A.isSymmetric(); // false, because A is not symmetric
A.set(1, 0, 10); // A = Matrix [[1, 1], [10, -1], rows: 2, columns: 2]. We have changed the second row and the first column
var diag = A.diag(); // diag = [1, -1] (values in the diagonal)
var m = A.mean(); // m = 2.75
var product = A.prod(); // product = -10 (product of all values of the matrix)
var norm = A.norm(); // norm = 10.14889156509222 (Frobenius norm of the matrix)
var transpose = A.transpose(); // transpose = Matrix [[1, 10], [1, -1], rows: 2, columns: 2]
```

#### Instantiation of matrix
```js
var z = Matrix.zeros(3, 2); // z = Matrix [[0, 0], [0, 0], [0, 0], rows: 3, columns: 2]
var z = Matrix.ones(2, 3); // z = Matrix [[1, 1, 1], [1, 1, 1], rows: 2, columns: 3]
var z = Matrix.eye(3, 4); // Matrix [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], rows: 3, columns: 4]. there are 1 only in the diagonal
var z = Matrix.ones(2, 3); // z = Matrix [[1, 1, 1], [1, 1, 1], rows: 2, columns: 3]
var z = Matrix.eye(3, 4); // z = Matrix [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], rows: 3, columns: 4]. there are 1 only in the diagonal
```

### Maths

```js
const {
Matrix,
Expand All @@ -136,129 +142,134 @@ const {
CholeskyDecomposition,
EigenvalueDecomposition,
} = require('ml-matrix');

//===========================
// inverse and pseudo-inverse
//===========================

```
#### Inverse and Pseudo-inverse
```js
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);

var inverseA = inverse(A);
var B = A.mmul(inverseA); // B = A * inverse(A), so B ~= Identity


// if A is singular, you can use SVD :
var A = new Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]); // A is singular, so the standard computation of inverse won't work (you can test if you don't trust me^^)
]);
// A is singular, so the standard computation of inverse won't work (you can test if you don't trust me^^)

var inverseA = inverse(A, (useSVD = true)); // inverseA is only an approximation of the inverse, by using the Singular Values Decomposition
var B = A.mmul(inverseA); // B = A * inverse(A), but inverse(A) is only an approximation, so B doesn't really be identity.

```
```js
// if you want the pseudo-inverse of a matrix :
var A = new Matrix([
[1, 2],
[3, 4],
[5, 6],
]);

var pseudoInverseA = A.pseudoInverse();
var B = A.mmul(pseudoInverseA).mmul(A); // with pseudo inverse, A*pseudo-inverse(A)*A ~= A. It's the case here

//=============
// Least square
//=============

// Least square is the following problem : We search x, such as A.x = b (A, x and b are matrix or vectors).
// Below, how to solve least square with our function

```
#### Least square
Least square is the following problem: We search for `x`, such that `A.x = B` (`A`, `x` and `B` are matrix or vectors).
Below, how to solve least square with our function
```js
// If A is non singular :
var A = new Matrix([
[3, 1],
[3, 1],
[4.25, 1],
[5.5, 1],
[8, 1],
[5.5, 1],
[8, 1],
]);
var b = Matrix.columnVector([4.5, 4.25, 5.5, 5.5]);
var x = solve(A, b);
var error = Matrix.sub(b, A.mmul(x)); // The error enables to evaluate the solution x found.

var B = Matrix.columnVector([4.5, 4.25, 5.5, 5.5]);
var x = solve(A, B);
var error = Matrix.sub(B, A.mmul(x)); // The error enables to evaluate the solution x found.
```
```js
// If A is non singular :
var A = new Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]);
var b = Matrix.columnVector([8, 20, 32]);
var x = solve(A, b, (useSVD = true)); // there are many solutions. x can be [1, 2, 1].transpose(), or [1.33, 1.33, 1.33].transpose(), etc.
var error = Matrix.sub(b, A.mmul(x)); // The error enables to evaluate the solution x found.

//===============
// Decompositions
//===============

// QR Decomposition
var B = Matrix.columnVector([8, 20, 32]);
var x = solve(A, B, (useSVD = true)); // there are many solutions. x can be [1, 2, 1].transpose(), or [1.33, 1.33, 1.33].transpose(), etc.
var error = Matrix.sub(B, A.mmul(x)); // The error enables to evaluate the solution x found.
```
#### Decompositions

##### QR Decomposition
```js
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);

var QR = new QrDecomposition(A);
var Q = QR.orthogonalMatrix;
var R = QR.upperTriangularMatrix;
// So you have the QR decomposition. If you multiply Q by R, you'll see that A = Q.R, with Q orthogonal and R upper triangular

// LU Decomposition

```
##### LU Decomposition
```js
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);

var LU = new LuDecomposition(A);
var L = LU.lowerTriangularMatrix;
var U = LU.upperTriangularMatrix;
var P = LU.pivotPermutationVector;
// So you have the LU decomposition. P includes the permutation of the matrix. Here P = [1, 2, 0], i.e the first row of LU is the second row of A, the second row of LU is the third row of A and the third row of LU is the first row of A.

// Cholesky Decomposition

```
##### Cholesky Decomposition
```js
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);

var cholesky = new CholeskyDecomposition(A);
var L = cholesky.lowerTriangularMatrix;

// Eigenvalues & eigenvectors

```
##### Eigenvalues & eigenvectors
```js
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);

var e = new EigenvalueDecomposition(A);
var real = e.realEigenvalues;
var imaginary = e.imaginaryEigenvalues;
var vectors = e.eigenvectorMatrix;

//=======
// Others
//=======

// Linear dependencies
```
#### Linear dependencies
```js
var A = new Matrix([
[2, 0, 0, 1],
[0, 1, 6, 0],
[0, 3, 0, 1],
[0, 0, 1, 0],
[0, 1, 2, 0],
]);
var dependencies = linearDependencies(A); // dependencies is a matrix with the dependencies of the rows. When we look row by row, we see that the first row is [0, 0, 0, 0, 0], so it means that the first row is independent, and the second row is [ 0, 0, 0, 4, 1 ], i.e the second row = 4 times the 4th row + the 5th row.

var dependencies = linearDependencies(A);
// dependencies is a matrix with the dependencies of the rows. When we look row by row, we see that the first row is [0, 0, 0, 0, 0], so it means that the first row is independent, and the second row is [ 0, 0, 0, 4, 1 ], i.e the second row = 4 times the 4th row + the 5th row.
```

## License
Expand Down

0 comments on commit bb1a8cb

Please sign in to comment.