This is a short example of how one can use the HTCondor Python API to programmatically construct a multi-step analysis pipeline. The two steps are
- Simulate random numbers to estimate Pi
- Produce trace plots from the collection of output files
I am leveraging a Docker container that automatically starts up a single-node HTCondor pool to run this workflow on my quad-core Windows laptop.
- Needed stuff
pi_samples.py
: Generates the random samples of Pipi_trace.py
: Creates the trace plotpi_dag.py
: Generates the DAG and submits the workflow
- Diagnostic tools
parse_log.py
: Parses individual log file into CSV tableexecute_machines.py
: Gets information about execute machines
*_submit.py
: For testing executables without submitting whole DAG
- General overview
- User's manual
- Python API reference material
- CLI reference manual
- HTC-Scipy notebook container page