Skip to content

A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

License

Notifications You must be signed in to change notification settings

nammbash/tensorpack

 
 

Repository files navigation

Tensorpack

Tensorpack is a neural network training interface based on TensorFlow.

Build Status ReadTheDoc Gitter chat model-zoo

Features:

It's Yet Another TF high-level API, with speed, and flexibility built together.

  1. Focus on training speed.

    • Speed comes for free with Tensorpack -- it uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack.

    • Data-parallel multi-GPU/distributed training strategy is off-the-shelf to use. It scales as well as Google's official benchmark.

    • See tensorpack/benchmarks for some benchmark scripts.

  2. Focus on large datasets.

    • You don't usually need tf.data. Symbolic programming often makes data processing harder. Tensorpack helps you efficiently process large datasets (e.g. ImageNet) in pure Python with autoparallelization.
  3. It's not a model wrapper.

    • There are too many symbolic function wrappers in the world. Tensorpack includes only a few common models. But you can use any symbolic function library inside Tensorpack, including tf.layers/Keras/slim/tflearn/tensorlayer/....

See tutorials and documentations to know more about these features.

Examples:

We refuse toy examples. We refuse low-quality implementations. Unlike most open source repos which only implement papers, Tensorpack examples faithfully reproduce papers, demonstrating its flexibility for actual research.

Vision:

Reinforcement Learning:

Speech / NLP:

Install:

Dependencies:

  • Python 2.7 or 3.3+. Python 2.7 is supported until it retires in 2020.
  • Python bindings for OpenCV. (Optional, but required by a lot of features)
  • TensorFlow ≥ 1.3, < 2. (Optional, if you only want to use tensorpack.dataflow alone as a data processing library)
pip install --upgrade git+https://github.com/tensorpack/tensorpack.git
# or add `--user` to install to user's local directories

Citing Tensorpack:

If you use Tensorpack in your research or wish to refer to the examples, please cite with:

@misc{wu2016tensorpack,
  title={Tensorpack},
  author={Wu, Yuxin and others},
  howpublished={\url{https://github.com/tensorpack/}},
  year={2016}
}

About

A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%