forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 1
/
common.py
139 lines (117 loc) · 4.06 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
# File: common.py
# Author: Yuxin Wu
import multiprocessing
import numpy as np
import random
import time
from six.moves import queue
from tqdm import tqdm
from tensorpack.callbacks import Callback
from tensorpack.utils import logger
from tensorpack.utils.concurrency import ShareSessionThread, StoppableThread
from tensorpack.utils.stats import StatCounter
from tensorpack.utils.utils import get_tqdm_kwargs
def play_one_episode(env, func, render=False):
def predict(s):
"""
Map from observation to action, with 0.01 greedy.
"""
s = np.expand_dims(s, 0) # batch
act = func(s)[0][0].argmax()
if random.random() < 0.01:
spc = env.action_space
act = spc.sample()
return act
ob = env.reset()
sum_r = 0
while True:
act = predict(ob)
ob, r, isOver, info = env.step(act)
if render:
env.render()
sum_r += r
if isOver:
return sum_r
def play_n_episodes(player, predfunc, nr, render=False):
logger.info("Start Playing ... ")
for k in range(nr):
score = play_one_episode(player, predfunc, render=render)
print("{}/{}, score={}".format(k, nr, score))
def eval_with_funcs(predictors, nr_eval, get_player_fn, verbose=False):
"""
Args:
predictors ([PredictorBase])
"""
class Worker(StoppableThread, ShareSessionThread):
def __init__(self, func, queue):
super(Worker, self).__init__()
self._func = func
self.q = queue
def func(self, *args, **kwargs):
if self.stopped():
raise RuntimeError("stopped!")
return self._func(*args, **kwargs)
def run(self):
with self.default_sess():
player = get_player_fn(train=False)
while not self.stopped():
try:
score = play_one_episode(player, self.func)
except RuntimeError:
return
self.queue_put_stoppable(self.q, score)
q = queue.Queue()
threads = [Worker(f, q) for f in predictors]
for k in threads:
k.start()
time.sleep(0.1) # avoid simulator bugs
stat = StatCounter()
def fetch():
r = q.get()
stat.feed(r)
if verbose:
logger.info("Score: {}".format(r))
for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()):
fetch()
# waiting is necessary, otherwise the estimated mean score is biased
logger.info("Waiting for all the workers to finish the last run...")
for k in threads:
k.stop()
for k in threads:
k.join()
while q.qsize():
fetch()
if stat.count > 0:
return (stat.average, stat.max)
return (0, 0)
def eval_model_multithread(pred, nr_eval, get_player_fn):
"""
Args:
pred (OfflinePredictor): state -> [#action]
"""
NR_PROC = min(multiprocessing.cpu_count() // 2, 8)
with pred.sess.as_default():
mean, max = eval_with_funcs(
[pred] * NR_PROC, nr_eval,
get_player_fn, verbose=True)
logger.info("Average Score: {}; Max Score: {}".format(mean, max))
class Evaluator(Callback):
def __init__(self, nr_eval, input_names, output_names, get_player_fn):
self.eval_episode = nr_eval
self.input_names = input_names
self.output_names = output_names
self.get_player_fn = get_player_fn
def _setup_graph(self):
NR_PROC = min(multiprocessing.cpu_count() // 2, 20)
self.pred_funcs = [self.trainer.get_predictor(
self.input_names, self.output_names)] * NR_PROC
def _trigger(self):
t = time.time()
mean, max = eval_with_funcs(
self.pred_funcs, self.eval_episode, self.get_player_fn)
t = time.time() - t
if t > 10 * 60: # eval takes too long
self.eval_episode = int(self.eval_episode * 0.94)
self.trainer.monitors.put_scalar('mean_score', mean)
self.trainer.monitors.put_scalar('max_score', max)