Skip to content

Object detection optimized specifically for pedestrians, cyclists, and vehicles on edge/mobile hardware. PedNet = Pedestrian network

Notifications You must be signed in to change notification settings

nathanrooy/ped-net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 

Repository files navigation

PedNet

Object detection optimized specifically for pedestrians, cyclists, and vehicles on edge/mobile hardware. Below is a comparison between Mobilenet V1 and PedNet.

Usage

Within the model/ directory there are two versions of PedNet; one that's been compiled for the Coral TPU, and one for TensorFlow Lite.

TF Lite: To use this version, simply install the TensorFlow Lite interpreter library which can be found [here]. If you're installing this on a Raspberry Pi running Raspbian Buster make sure to use the Python wheel built for Linux (ARM 64) and Python 3.7 which can achieved with the following:

pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_armv7l.whl

Coral TPU: In order to utilize the Coral TPU, the Edge TPU runtime and TensorFlow Lite interpreter library must be installed. The TensorFlow Lite installation is the same as above, and the Edge TPU can be installed by following the directions [here].

Once the required libraries have been installed, usage is the same as any other TF model. Input image size is [300x300x3].

Model versions

model architecture cpu tpu pedestrians cyclists vehicles e-scooters
pednet_20200517 mobilenet ssd v1
coming soon ?

Training data (as of 2020-05-17)

class imgs (#) annotations (#)
bicycle 492 1139
pedestrian 390 3194
vehicle 1375 9302
e-scooter --- ---

Performance

coming soon...

About

Object detection optimized specifically for pedestrians, cyclists, and vehicles on edge/mobile hardware. PedNet = Pedestrian network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published