Skip to content

Commit

Permalink
Merge pull request #3259 from jessica-mitchell/update-benchmark-docs
Browse files Browse the repository at this point in the history
Update benchmark result docs
  • Loading branch information
jessica-mitchell authored Jul 23, 2024
2 parents 8f8789b + 0067409 commit 0a46520
Showing 1 changed file with 34 additions and 16 deletions.
50 changes: 34 additions & 16 deletions doc/htmldoc/benchmark_results.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@ NEST performance benchmarks


NEST performance is continuously monitored and improved across various network sizes.
Here we show benchmarking results for NEST version 3.8 on Jureca-DC.
Here we show benchmarking results for NEST version 3.8 on Jureca-DC [1]_.
The benchmarking framework and the structure of the graphs is described in [2]_.


Strong scaling experiment of the Microcircuit model [1]_
Strong scaling experiment of the Microcircuit model [3]_
---------------------------------------------------------

.. grid:: 1 1 1 1
Expand All @@ -26,14 +26,16 @@ Strong scaling experiment of the Microcircuit model [1]_
:class: sd-align-minor-center


* The model has ~80 000 neurons and ~300 million synapses
* The model has ~80 000 neurons and ~300 million synapses, minimal delay 0.1 ms
* 2 MPI processes per node, 64 threads per MPI process
* Increasing number of computing resources decrease simulation time
* The model runs faster than real time
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation
* The model runs faster than real time [4]_




Strong scaling experiment of the Multi-area-model [2]_
Strong scaling experiment of the Multi-area-model [5]_
-------------------------------------------------------

.. grid:: 1 1 1 1
Expand All @@ -51,13 +53,15 @@ Strong scaling experiment of the Multi-area-model [2]_
:columns: 10
:class: sd-align-minor-center

* The model has ~4.1 million neurons and ~24 billion synapses
* The model has ~4.1 million neurons and ~24 billion synapses, minimal delay 0.1 ms
* 2 MPI processes per node, 64 threads per MPI process
* Steady decrease of run time with additional compute resources
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation




Weak scaling experiment of the HPC benchmark model [3]_
Weak scaling experiment of the HPC benchmark model [6]_
--------------------------------------------------------

.. grid:: 1 1 1 1
Expand All @@ -77,8 +81,10 @@ Weak scaling experiment of the HPC benchmark model [3]_


* The size of network scales proportionally with the computational resources used
* Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses
* Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses, minimal delay 1.5 ms
* 2 MPI processes per node, 64 threads per MPI process
* The figure shows that NEST can handle massive networks and simulate them efficiently
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation


.. seealso::
Expand All @@ -92,15 +98,27 @@ Weak scaling experiment of the HPC benchmark model [3]_
References
----------

.. [1] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
.. [1] Juelich Supercomputing Centre. 2021. JURECA: Data Centric and Booster Modules implementing the Modular
Supercomputing Architecture at Jülich Supercomputing Centre. Journal of large-scale research facilities,
7, A182. DOI: http://dx.doi.org/10.17815/jlsrf-7-182
.. [2] Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S,
Tetzlaff T, Diesmann M and Senk J (2022). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
Frontiers in Neuroinformatics(16):837549. https://doi.org/10.3389/fninf.2022.837549
.. [3] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking
network model. Cerebral Cortex. 24(3):785–806. DOI: `10.1093/cercor/bhs358 <https://doi.org/10.1093/cercor/bhs358>`__.
.. [4] Kurth AC, Senk J, Terhorst D, Finnerty J, Diesmann M. 2022. Sub-realtime simulation of a neuronal network of natural density.
Neuromorphic computing and engineering 2(2), 021001
https://iopscience.iop.org/article/10.1088/2634-4386/ac55fc/meta
.. [2] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
account of the network structure of macaque visual cortex. Brain Structure
and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
.. [5] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
account of the network structure of macaque visual cortex. Brain Structure
and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
.. [3] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002
.. [6] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002

0 comments on commit 0a46520

Please sign in to comment.