This project, a Dart binding for llama.cpp, is currently on hold as we await the porting of llama.cpp helpers code to C. This transition is expected to simplify the process of generating bindings. Once this porting is complete, development will resume with enhanced efficiency and ease.
This project primarily targets Dart, which aligns perfectly with Flutter's goals and objectives. We are excited about the potential this binding will unlock for the Flutter community and are eager to continue development once the necessary updates are made.
Stay tuned for future updates, and thank you for your support and understanding!
This Dart library, powered by llama.cpp, enables advanced text generation for both Dart console and Flutter mobile apps. It offers a simple interface for high-performance text generation, making it ideal for a wide range of applications seeking dynamic content.
- Enables high-performance, asynchronous text generation using Dart isolates.
- Offers flexible configuration through customizable model and context parameters.
- Supports real-time text generation in Flutter apps with stream-based output.
To begin using the llama.cpp Dart Library, ensure you meet the necessary prerequisites and follow the outlined steps. This package is designed for Dart, not as a Flutter plugin.
- Obtain the Library: Download or clone the
llama.cpp
library from its GitHub repository. - Platform-Specific Build: Compile
llama.cpp
into a shared library using your system's C++ compiler. The output will be a .dll, .so, or .dylib file, depending on your operating system. - Integrate with Your Dart Application: Move the compiled shared library to a directory accessible by your Dart application.
- Dart SDK (for console application)
- Flutter SDK (for Flutter application)
- Additional dependencies as per your project requirements
See sample code
import 'dart:io';
import 'package:llama_cpp_dart/llama_cpp_dart.dart';
void main() {
ContextParams contextParams = ContextParams();
int size = 32768;
size = 8192 * 4;
contextParams.batch = 8192 ~/ 4;
contextParams.context = size;
contextParams.ropeFreqBase = 57200 * 4;
contextParams.ropeFreqScale = 0.75 / 4;
Llama llama = Llama(
"mistral-7b-openorca.Q5_K_M.gguf", // Change this to the path of your model
ModelParams(),
contextParams);
llama.setPrompt("Your prompt here"); // Change this to your prompt
// Asynchronous generation
await for (String token in llama.prompt(prompt)) {
stdout.write(token);
}
// Synchronous generation
while (true) {
var (token, done) = llama.getNext();
stdout.write(token);
if (done) {
break;
}
}
llama.dispose(); // Clean up
}
import 'dart:async';
import 'package:flutter/material.dart';
import 'dart:io';
import 'package:flutter/services.dart' show rootBundle;
import 'package:path_provider/path_provider.dart';
import 'package:llama_cpp_dart/llama_cpp_dart.dart';
void main() async {
runApp(const App());
}
class App extends StatelessWidget {
const App({super.key});
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter llama.cpp Demo',
themeMode: ThemeMode.dark,
darkTheme: ThemeData.dark(
useMaterial3: true,
),
home: const LandingPage(),
);
}
}
class LandingPage extends StatefulWidget {
const LandingPage({super.key});
@override
State<LandingPage> createState() => _LandingPageState();
}
class _LandingPageState extends State<LandingPage> {
final TextEditingController _modelPathController = TextEditingController();
final TextEditingController _promptController = TextEditingController();
final TextEditingController _resultController = TextEditingController();
LlamaProcessor? llamaProcessor;
StreamSubscription<String>? _streamSubscription;
bool isModelLoaded = false;
@override
void initState() {
super.initState();
_modelPathController.text = "";
_promptController.text = "### Human: divide by zero please\n### Assistant:";
// _extractModel();
}
/*static */ _extractModel() async {
String model = "phi-2-dpo.Q5_K_S.gguf";
final directory = await getApplicationDocumentsDirectory();
final filePath = '${directory.path}/$model';
final fileExists = await File(filePath).exists();
if (!fileExists) {
final byteData = await rootBundle.load('assets/models/$model');
final file = File(filePath);
await file.writeAsBytes(byteData.buffer
.asUint8List(byteData.offsetInBytes, byteData.lengthInBytes));
}
_modelPathController.text = filePath;
setState(() {});
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: const Text('Model Interaction'),
),
body: Padding(
padding: const EdgeInsets.all(8.0),
child: Column(
children: [
TextField(
controller: _modelPathController,
decoration: const InputDecoration(
labelText: 'Model Path',
border: OutlineInputBorder(),
),
),
const SizedBox(height: 10),
TextField(
controller: _promptController,
decoration: const InputDecoration(
labelText: 'Prompt',
border: OutlineInputBorder(),
),
minLines: 5,
maxLines: null,
),
const SizedBox(height: 10),
Expanded(
child: TextField(
controller: _resultController,
decoration: const InputDecoration(
labelText: 'Result',
border: OutlineInputBorder(),
),
maxLines: null,
expands: true,
textAlignVertical: TextAlignVertical.top),
),
const SizedBox(height: 10),
Text(isModelLoaded ? 'Model Loaded' : 'Model Not Loaded'),
const SizedBox(height: 10),
Row(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: [
ElevatedButton(
onPressed: () {
llamaProcessor = LlamaProcessor(_modelPathController.text);
setState(() {
isModelLoaded = true;
});
},
child: const Text('Load Model'),
),
ElevatedButton(
onPressed: isModelLoaded
? () {
llamaProcessor?.unloadModel();
setState(() {
isModelLoaded = false;
});
}
: null,
child: const Text('Unload Model'),
),
ElevatedButton(
onPressed: isModelLoaded
? () {
_streamSubscription?.cancel();
_resultController.text = "";
_streamSubscription =
llamaProcessor?.stream.listen((data) {
_resultController.text += data;
}, onError: (error) {
_resultController.text = "Error: $error";
}, onDone: () {});
llamaProcessor?.prompt(_promptController.text);
}
: null,
child: const Text('Generate Answer'),
),
ElevatedButton(
onPressed: isModelLoaded
? () {
llamaProcessor?.stop();
}
: null,
child: const Text('Stop Generation'),
),
],
),
],
),
),
);
}
@override
void dispose() {
_streamSubscription?.cancel();
_modelPathController.dispose();
_promptController.dispose();
_resultController.dispose();
llamaProcessor?.unloadModel();
super.dispose();
}
}
For more detailed information about the classes and their functionalities, please refer to the following documentation:
- ContextParams - Configuration settings for the Llama model.
- Llama - Interface for interacting with the Llama model.
- LlamaProcessor - Handles asynchronous operation of a Llama model in a separate isolate.
- LlamaSplitMode - Enumerates modes for splitting the Llama model across multiple GPUs.
- ModelParams - Configuration settings for how the model is split and operated across multiple GPUs.
This project is licensed under the MIT License - see the LICENSE.md
file for details.