Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

General: rustc uses too much memory when compiling librustc #4

Open
nielx opened this issue Jul 1, 2018 · 4 comments
Open

General: rustc uses too much memory when compiling librustc #4

nielx opened this issue Jul 1, 2018 · 4 comments
Labels

Comments

@nielx
Copy link
Owner

nielx commented Jul 1, 2018

Memory usage of rustc compiling librustc goes through the roof. It is the main reason we cannot build on x86 anymore, and it requires at least 5.2 GB of RAM in x86_64.
We need to investigate whether there is something about the Haiku port that causes this abnormality.

@nielx nielx added the question label Jul 1, 2018
@Mark-Simulacrum
Copy link

I would suspect that this is not a Haiku issue; you can try turning codegen-units off (set them to 1) within config.toml for the rust build itself; I'm not sure you can configure this behavior for rustc in the wild. It may be worth filing an upstream bug; it's likely we can do better at managing memory usage during codegen (if that's where the issue is).

@nielx
Copy link
Owner Author

nielx commented Jul 8, 2018

@Mark-Simulacrum I will try to do some more research on memory usage, to see where exactly memory is allocated. A reason why I think there is a Haiku component associated with it, is that when I watch memory usage on Haiku it just increases, never decreases, while on Windows I do see more variable memory usage during compilation. It may be inefficiency in Haiku's memory allocator.

nielx pushed a commit that referenced this issue Jun 26, 2020
update from origin 2020-06-18
nielx pushed a commit that referenced this issue Dec 7, 2020
Don't run `resolve_vars_if_possible` in `normalize_erasing_regions`

Neither `@eddyb` nor I could figure out what this was for. I changed it to `assert_eq!(normalized_value, infcx.resolve_vars_if_possible(&normalized_value));` and it passed the UI test suite.

<details><summary>

Outdated, I figured out the issue - `needs_infer()` needs to come _after_ erasing the lifetimes

</summary>

Strangely, if I change it to `assert!(!normalized_value.needs_infer())` it panics almost immediately:

```
query stack during panic:
#0 [normalize_generic_arg_after_erasing_regions] normalizing `<str::IsWhitespace as str::pattern::Pattern>::Searcher`
#1 [needs_drop_raw] computing whether `str::iter::Split<str::IsWhitespace>` needs drop
#2 [mir_built] building MIR for `str::<impl str>::split_whitespace`
#3 [unsafety_check_result] unsafety-checking `str::<impl str>::split_whitespace`
#4 [mir_const] processing MIR for `str::<impl str>::split_whitespace`
#5 [mir_promoted] processing `str::<impl str>::split_whitespace`
#6 [mir_borrowck] borrow-checking `str::<impl str>::split_whitespace`
#7 [analysis] running analysis passes on this crate
end of query stack
```

I'm not entirely sure what's going on - maybe the two disagree?

</details>

For context, this came up while reviewing rust-lang#77467 (cc `@lcnr).`

Possibly this needs a crater run?

r? `@nikomatsakis`
cc `@matthewjasper`
nielx pushed a commit that referenced this issue Feb 16, 2021
HWAddressSanitizer support

#  Motivation
Compared to regular ASan, HWASan has a [smaller overhead](https://source.android.com/devices/tech/debug/hwasan). The difference in practice is that HWASan'ed code is more usable, e.g. Android device compiled with HWASan can be used as a daily driver.

# Example
```
fn main() {
    let xs = vec![0, 1, 2, 3];
    let _y = unsafe { *xs.as_ptr().offset(4) };
}
```
```
==223==ERROR: HWAddressSanitizer: tag-mismatch on address 0xefdeffff0050 at pc 0xaaaad00b3468
READ of size 4 at 0xefdeffff0050 tags: e5/00 (ptr/mem) in thread T0
    #0 0xaaaad00b3464  (/root/main+0x53464)
    #1 0xaaaad00b39b4  (/root/main+0x539b4)
    #2 0xaaaad00b3dd0  (/root/main+0x53dd0)
    #3 0xaaaad00b61dc  (/root/main+0x561dc)
    #4 0xaaaad00c0574  (/root/main+0x60574)
    #5 0xaaaad00b6290  (/root/main+0x56290)
    #6 0xaaaad00b6170  (/root/main+0x56170)
    #7 0xaaaad00b3578  (/root/main+0x53578)
    #8 0xffff81345e70  (/lib64/libc.so.6+0x20e70)
    #9 0xaaaad0096310  (/root/main+0x36310)

[0xefdeffff0040,0xefdeffff0060) is a small allocated heap chunk; size: 32 offset: 16
0xefdeffff0050 is located 0 bytes to the right of 16-byte region [0xefdeffff0040,0xefdeffff0050)
allocated here:
    #0 0xaaaad009bcdc  (/root/main+0x3bcdc)
    #1 0xaaaad00b1eb0  (/root/main+0x51eb0)
    #2 0xaaaad00b20d4  (/root/main+0x520d4)
    #3 0xaaaad00b2800  (/root/main+0x52800)
    #4 0xaaaad00b1cf4  (/root/main+0x51cf4)
    #5 0xaaaad00b33d4  (/root/main+0x533d4)
    #6 0xaaaad00b39b4  (/root/main+0x539b4)
    #7 0xaaaad00b61dc  (/root/main+0x561dc)
    #8 0xaaaad00b3578  (/root/main+0x53578)
    #9 0xaaaad0096310  (/root/main+0x36310)

Thread: T0 0xeffe00002000 stack: [0xffffc0590000,0xffffc0d90000) sz: 8388608 tls: [0xffff81521020,0xffff815217d0)
Memory tags around the buggy address (one tag corresponds to 16 bytes):
  0xfefcefffef80: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffef90: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffefa0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffefb0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffefc0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffefd0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffefe0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefcefffeff0: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
=>0xfefceffff000: a2  a2  05  00  e5 [00] 00  00  00  00  00  00  00  00  00  00
  0xfefceffff010: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff020: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff030: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff040: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff050: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff060: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff070: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
  0xfefceffff080: 00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
Tags for short granules around the buggy address (one tag corresponds to 16 bytes):
  0xfefcefffeff0: ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..
=>0xfefceffff000: ..  ..  c5  ..  .. [..] ..  ..  ..  ..  ..  ..  ..  ..  ..  ..
  0xfefceffff010: ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..  ..
See https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#short-granules for a description of short granule tags
Registers where the failure occurred (pc 0xaaaad00b3468):
    x0  e500efdeffff0050  x1  0000000000000004  x2  0000ffffc0d8f5a0  x3  0200efff00000000
    x4  0000ffffc0d8f4c0  x5  000000000000004f  x6  00000ffffc0d8f36  x7  0000efff00000000
    x8  e500efdeffff0050  x9  0200efff00000000  x10 0000000000000000  x11 0200efff00000000
    x12 0200effe000006b0  x13 0200effe000006b0  x14 0000000000000008  x15 00000000c00000cf
    x16 0000aaaad00a0afc  x17 0000000000000003  x18 0000000000000001  x19 0000ffffc0d8f718
    x20 ba00ffffc0d8f7a0  x21 0000aaaad00962e0  x22 0000000000000000  x23 0000000000000000
    x24 0000000000000000  x25 0000000000000000  x26 0000000000000000  x27 0000000000000000
    x28 0000000000000000  x29 0000ffffc0d8f650  x30 0000aaaad00b3468
```

# Comments/Caveats
* HWASan is only supported on arm64.
* I'm not sure if I should add a feature gate or piggyback on the existing one for sanitizers.
* HWASan requires `-C target-feature=+tagged-globals`. That flag should probably be set transparently to the user. Not sure how to go about that.

# TODO
* Need more tests.
* Update documentation.
* Fix symbolization.
* Integrate with CI
@nielx
Copy link
Owner Author

nielx commented Jul 2, 2022

Two notes:

  • It might actually not be rustc to blame (even though it is by no means light on memory usage). Instead, it is the build process that seems to increasingly use more memory as it goes through the steps, indicating that there is some sort of leak. An extra indicator to this is that when the build ends due to being out of memory, restarting it will push it a bit further.
  • @waddlesplash has indicated it might be that we are running into the (known) memory leak of fork(). This is used by the Rust standard library to spawn processes, which is something done by cargo. The suggestion is to try to see if we can switch to posix_spawn() instead, which in most cases does not use fork on Haiku. It is not entirely clear if this would fix it though.

The next step is to get support for posix_spawn in libc.

@nielx
Copy link
Owner Author

nielx commented Jul 2, 2022

Future changes: /library/std/src/sys/unix/process/process_unix.rs

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants