-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #227 from jhlegarreta/AddGPExperimentScripts
ENH: Add GP error analysis experiment script
- Loading branch information
Showing
2 changed files
with
201 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
|
||
""" | ||
Simulate the DWI signal from a single fiber and analyze the prediction error of an estimator using | ||
Gaussian processes. | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
from collections import defaultdict | ||
|
||
# import nibabel as nib | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.model_selection import RepeatedKFold, cross_val_score | ||
|
||
from eddymotion.model._sklearn import ( | ||
EddyMotionGPR, | ||
SphericalKriging, | ||
) | ||
from eddymotion.testing import simulations as testsims | ||
|
||
|
||
def cross_validate( | ||
X: np.ndarray, | ||
y: np.ndarray, | ||
cv: int, | ||
) -> dict[int, list[tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]]]: | ||
""" | ||
Perform the experiment by estimating the dMRI signal using a Gaussian process model. | ||
Parameters | ||
---------- | ||
gtab : :obj:`~dipy.core.gradients.gradient_table` | ||
Gradient table. | ||
S0 : :obj:`float` | ||
S0 value. | ||
evals1 : :obj:`~numpy.ndarray` | ||
Eigenvalues of the tensor. | ||
evecs : :obj:`~numpy.ndarray` | ||
Eigenvectors of the tensor. | ||
snr : :obj:`float` | ||
Signal-to-noise ratio. | ||
cv : :obj:`int` | ||
number of folds | ||
Returns | ||
------- | ||
:obj:`dict` | ||
Data for the predicted signal and its error. | ||
""" | ||
gpm = EddyMotionGPR( | ||
kernel=SphericalKriging(a=1.15, lambda_s=120), | ||
alpha=100, | ||
optimizer=None, | ||
) | ||
|
||
rkf = RepeatedKFold(n_splits=cv, n_repeats=120 // cv) | ||
scores = cross_val_score(gpm, X, y, scoring="neg_root_mean_squared_error", cv=rkf) | ||
return scores | ||
|
||
|
||
def _build_arg_parser() -> argparse.ArgumentParser: | ||
""" | ||
Build argument parser for command-line interface. | ||
Returns | ||
------- | ||
:obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
""" | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, formatter_class=argparse.RawTextHelpFormatter | ||
) | ||
parser.add_argument( | ||
"hsph_dirs", | ||
help="Number of diffusion gradient-encoding directions in the half sphere", | ||
type=int, | ||
) | ||
parser.add_argument("bval_shell", help="Shell b-value", type=float) | ||
parser.add_argument("S0", help="S0 value", type=float) | ||
parser.add_argument("--evals1", help="Eigenvalues of the tensor", nargs="+", type=float) | ||
parser.add_argument("--snr", help="Signal to noise ratio", type=float) | ||
parser.add_argument("--repeats", help="Number of repeats", type=int, default=5) | ||
parser.add_argument( | ||
"--kfold", help="Number of directions to leave out/predict", nargs="+", type=int | ||
) | ||
return parser | ||
|
||
|
||
def _parse_args(parser: argparse.ArgumentParser) -> argparse.Namespace: | ||
""" | ||
Parse command-line arguments. | ||
Parameters | ||
---------- | ||
parser : :obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
Returns | ||
------- | ||
:obj:`~argparse.Namespace` | ||
Parsed arguments. | ||
""" | ||
return parser.parse_args() | ||
|
||
|
||
def main() -> None: | ||
"""Main function for running the experiment and plotting the results.""" | ||
parser = _build_arg_parser() | ||
args = _parse_args(parser) | ||
|
||
data, gtab = testsims.simulate_voxels( | ||
args.S0, | ||
args.evals1, | ||
args.hsph_dirs, | ||
bval_shell=args.bval_shell, | ||
snr=args.snr, | ||
n_voxels=100, | ||
seed=None, | ||
) | ||
|
||
X = gtab[~gtab.b0s_mask].bvecs | ||
y = data[:, ~gtab.b0s_mask] | ||
|
||
# Use Scikit-learn cross validation | ||
scores = defaultdict(list, {}) | ||
for n in args.kfold: | ||
for i in range(args.repeats): | ||
cv_scores = -1.0 * cross_validate(X, y.T, n) | ||
scores["rmse"] += cv_scores.tolist() | ||
scores["repeat"] += [i] * len(cv_scores) | ||
scores["n_folds"] += [n] * len(cv_scores) | ||
|
||
print(f"Finished {n}-fold cross-validation") | ||
|
||
scores_df = pd.DataFrame(scores) | ||
scores_df.to_csv("cv_scores.tsv", sep="\t", index=None, na_rep="n/a") | ||
|
||
grouped = scores_df.groupby(["n_folds"]) | ||
print(grouped[["rmse"]].mean()) | ||
print(grouped[["rmse"]].std()) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters