Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add probability field calc and plots #127

Merged
merged 8 commits into from
Dec 20, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions ensembleperturbation/plotting/surrogate.py
WPringle marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -564,3 +564,76 @@ def plot_kl_surrogate_fit(

if output_filename is not None:
figure.savefig(output_filename, dpi=200, bbox_inches='tight')


def plot_selected_probability_fields(
node_prob_field: xarray.Dataset, level_list: list, output_directory: PathLike
):
levels = node_prob_field.levels

sources = node_prob_field['source'].values
if output_directory is not None:
if not isinstance(output_directory, Path):
output_directory = Path(output_directory)

bounds = numpy.array(
[
node_prob_field['x'].min(),
node_prob_field['y'].min(),
node_prob_field['x'].max(),
node_prob_field['y'].max(),
]
)
vmax = numpy.round_(levels.sel(source='model').quantile(0.98), decimals=1)
vmin = 0.0
for lvl in level_list:
figure = pyplot.figure()
figure.set_size_inches(10, 10 / 1.61803398875)
figure.suptitle(f'Probability of water level exceeding {lvl}-m')
for index, source in enumerate(sources):
map_axis = figure.add_subplot(2, len(sources), index + 1)
map_axis.title.set_text(f'{source}')
countries = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))

map_axis.set_xlim((bounds[0], bounds[2]))
map_axis.set_ylim((bounds[1], bounds[3]))

xlim = map_axis.get_xlim()
ylim = map_axis.get_ylim()

countries.plot(color='lightgrey', ax=map_axis)

points = numpy.vstack(
(
node_prob_field['x'],
node_prob_field['y'],
levels.sel(level=lvl, source=source),
)
).T
if 'element' not in node_prob_field:
im = plot_points(
points=points, axis=map_axis, add_colorbar=False, vmax=vmax, vmin=vmin,
)
else:
im = plot_surface(
points=points,
element_table=node_prob_field['element'].values,
axis=map_axis,
add_colorbar=False,
levels=numpy.linspace(vmin, vmax, 25 + 1),
extend='both',
)

map_axis.set_xlim(xlim)
map_axis.set_ylim(ylim)

pyplot.subplots_adjust(wspace=0.02, right=0.96)
cax = pyplot.axes([0.95, 0.55, 0.015, 0.3])
cbar = figure.colorbar(im, extend='both', cax=cax)

if output_directory is not None:
figure.savefig(
output_directory / f'probability_exceeding_{lvl}m.png',
dpi=200,
bbox_inches='tight',
)
151 changes: 151 additions & 0 deletions ensembleperturbation/uncertainty_quantification/surrogate.py
WPringle marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -606,3 +606,154 @@ def compute_surrogate_percentiles(
out = out.reshape(q.shape + shape)

return out


def probability_field_from_samples(
samples: xarray.Dataset,
levels: List[float],
surrogate_model: numpoly.ndpoly,
distribution: chaospy.Distribution,
minimum_allowable_value: float = None,
convert_from_log_scale: Union[bool, float] = False,
convert_from_depths: Union[bool, float] = False,
) -> xarray.DataArray:

LOGGER.info(f'calculating {len(levels)} probability field(s): {levels}')

surrogate_prob_field = compute_surrogate_probability_field(
poly=surrogate_model,
levels=levels,
dist=distribution,
minimum_allowable_value=minimum_allowable_value,
convert_from_log_scale=convert_from_log_scale,
convert_from_depths=convert_from_depths,
depths=samples['depth'],
)

surrogate_prob_field = xarray.DataArray(
surrogate_prob_field,
coords={
'level': levels,
**{
coord: values
for coord, values in samples.coords.items()
if coord not in ['run', 'type']
},
},
dims=('level', *(dim for dim in samples.dims if dim not in ['run', 'type'])),
)

return surrogate_prob_field


def probability_field_from_surrogate(
levels: List[float],
surrogate_model: numpoly.ndpoly,
distribution: chaospy.Distribution,
training_set: xarray.Dataset,
minimum_allowable_value: float = None,
convert_from_log_scale: Union[bool, float] = False,
convert_from_depths: Union[bool, float] = False,
element_table: xarray.DataArray = None,
filename: PathLike = None,
) -> xarray.Dataset:

if filename is not None and not isinstance(filename, Path):
filename = Path(filename)

if filename is None or not filename.exists():
surrogate_prob_field = probability_field_from_samples(
samples=training_set,
levels=levels,
surrogate_model=surrogate_model,
distribution=distribution,
minimum_allowable_value=minimum_allowable_value,
convert_from_log_scale=convert_from_log_scale,
convert_from_depths=convert_from_depths,
)

# before evaluating prob. field for model set null water elevation to the ground elevation
training_set = numpy.fmax(training_set, -training_set['depth'])
if minimum_allowable_value is not None:
too_small = (training_set + training_set['depth']).values < minimum_allowable_value
training_set.values[too_small] = numpy.nan

ds1, ds2 = xarray.broadcast(training_set, surrogate_prob_field['level'])
modeled_prob_field = (ds1 >= ds2).sum(dim='run') / len(training_set.run)

node_prob_field = xarray.combine_nested(
[surrogate_prob_field, modeled_prob_field], concat_dim='source'
).assign_coords(source=['surrogate', 'model'])

node_prob_field = node_prob_field.to_dataset(name='levels')

node_prob_field = node_prob_field.assign(
differences=numpy.fabs(surrogate_prob_field - modeled_prob_field)
)

if element_table is not None:
node_prob_field = node_prob_field.assign_coords({'element': element_table})

if filename is not None:
LOGGER.info(f'saving prob_field to "{filename}"')
node_prob_field.to_netcdf(filename)
else:
LOGGER.info(f'loading prob_field from "{filename}"')
node_prob_field = xarray.open_dataset(filename)

return node_prob_field


def compute_surrogate_probability_field(
poly: numpoly.ndpoly,
levels: List[float],
dist: chaospy.Distribution,
sample: int = 10000,
minimum_allowable_value: float = None,
convert_from_log_scale: Union[bool, float] = False,
convert_from_depths: Union[bool, float] = False,
depths: xarray.DataArray = None,
**kws,
):

poly = chaospy.aspolynomial(poly)
shape = poly.shape
poly = poly.ravel()

levels = numpy.asarray(levels).ravel()
dim = len(dist)

# Interior
Z = dist.sample(sample, **kws).reshape(len(dist), sample)
poly1 = poly(*Z)

# Min/max
ext = numpy.mgrid[(slice(0, 2, 1),) * dim].reshape(dim, 2 ** dim).T
ext = numpy.where(ext, dist.lower, dist.upper).T
poly2 = poly(*ext)
poly2 = numpy.array([_ for _ in poly2.T if not numpy.any(numpy.isnan(_))]).T

# Finish
if poly2.shape:
poly1 = numpy.concatenate([poly1, poly2], -1)
if isinstance(convert_from_log_scale, float):
poly1 = convert_from_log_scale ** poly1
elif convert_from_log_scale:
poly1 = numpy.exp(poly1)
samples = poly1.shape[1]

# adjustments and elev corrections
if isinstance(convert_from_depths, (float, numpy.ndarray)):
poly1 -= convert_from_depths
if minimum_allowable_value is not None:
too_small = poly1 < minimum_allowable_value
poly1[too_small] = numpy.nan
if isinstance(convert_from_depths, (float, numpy.ndarray)) or convert_from_depths:
# TODO: Sanity check for depth vs poly shapes
poly1 -= depths.values[:, None]

out = (poly1[:, :, None] > (levels[None, None, :])).sum(axis=1).T / samples

out = out.reshape(levels.shape + shape)

return out
Loading