DA-2: Degree-Accumulated Data Augmentation on Point Clouds with Curriculum Dynamic Threshold Selection
Conventional point cloud data augmentation methods typically employ offline transformations with predefined, randomly applied transformations. This randomness may lead to suboptimal training samples that are not suitable for the current training stage. Additionally, the predefined parameter range restricts the exploration space of augmentation limiting the diversity of samples. This paper introduces Degree-Accumulated Data Augmentation (
# Create a new conda environment
conda create -n adaptpoint python=3.8 -y
# install CUDA 11.3 torch 1.12
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# install requirements
pip install -r requirements.txt
# install cpp extensions, the pointnet++ library
cd openpoints/cpp/pointnet2_batch
python setup.py install
cd ../
Download ScanObjectNN and unzip the folder under ./data/ScanObjectNN
.
The directory structure should be:
|data/
|--- ...
|--- ScanObjectNN
|--- h5_files
|--- main_split
|--- training_objectdataset_augmentedrot_scale75.h5
|--- test_objectdataset_augmentedrot_scale75.h5
CUDA_VISIBLE_DEVICES=0 python examples/classification/main.py --cfg cfgs/scanobjectnn/da-2/pointnext.yaml
This repo benefits from the excellent codebase PointNext. Thanks for their wonderful works.