-
Notifications
You must be signed in to change notification settings - Fork 136
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a new reranking based on mosec. (#210)
Signed-off-by: Jincheng Miao <[email protected]>
- Loading branch information
Showing
9 changed files
with
430 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# build reranking Mosec endpoint docker image | ||
|
||
``` | ||
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t reranking-langchain-mosec:latest -f comps/reranks/langchain-mosec/mosec-docker/Dockerfile . | ||
``` | ||
|
||
# build reranking microservice docker image | ||
|
||
``` | ||
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t opea/reranking-langchain-mosec:latest -f comps/reranks/langchain-mosec/docker/Dockerfile . | ||
``` | ||
|
||
# launch Mosec endpoint docker container | ||
|
||
``` | ||
docker run -d --name="reranking-langchain-mosec-endpoint" -p 6001:8000 reranking-langchain-mosec:latest | ||
``` | ||
|
||
# launch embedding microservice docker container | ||
|
||
``` | ||
export MOSEC_RERANKING_ENDPOINT=http://127.0.0.1:6001 | ||
docker run -d --name="reranking-langchain-mosec-server" -e http_proxy=$http_proxy -e https_proxy=$https_proxy -p 6000:8000 --ipc=host -e MOSEC_RERANKING_ENDPOINT=$MOSEC_RERANKING_ENDPOINT opea/reranking-langchain-mosec:latest | ||
``` | ||
|
||
# run client test | ||
|
||
``` | ||
curl http://localhost:6000/v1/reranking \ | ||
-X POST \ | ||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \ | ||
-H 'Content-Type: application/json' | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
|
||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
FROM langchain/langchain:latest | ||
|
||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \ | ||
libgl1-mesa-glx \ | ||
libjemalloc-dev \ | ||
vim | ||
|
||
RUN useradd -m -s /bin/bash user && \ | ||
mkdir -p /home/user && \ | ||
chown -R user /home/user/ | ||
|
||
USER user | ||
|
||
COPY comps /home/user/comps | ||
|
||
RUN pip install --no-cache-dir --upgrade pip && \ | ||
pip install --no-cache-dir -r /home/user/comps/reranks/langchain-mosec/requirements.txt | ||
|
||
ENV PYTHONPATH=$PYTHONPATH:/home/user | ||
|
||
WORKDIR /home/user/comps/reranks/langchain-mosec | ||
|
||
ENTRYPOINT ["python", "reranking_mosec_xeon.py"] | ||
|
22 changes: 22 additions & 0 deletions
22
comps/reranks/langchain-mosec/docker/docker_compose_embedding.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
version: "3.8" | ||
|
||
services: | ||
reranking: | ||
image: opea/reranking-langchain-mosec:latest | ||
container_name: reranking-langchain-mosec-server | ||
ports: | ||
- "6000:8000" | ||
ipc: host | ||
environment: | ||
http_proxy: ${http_proxy} | ||
https_proxy: ${https_proxy} | ||
MOSEC_RERANKING_ENDPOINT: ${MOSEC_RERANKING_ENDPOINT} | ||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY} | ||
restart: unless-stopped | ||
|
||
networks: | ||
default: | ||
driver: bridge |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
From ubuntu:22.04 | ||
ARG DEBIAN_FRONTEND=noninteractive | ||
|
||
ENV GLIBC_TUNABLES glibc.cpu.x86_shstk=permissive | ||
|
||
COPY comps /root/comps | ||
|
||
RUN apt update && apt install -y python3 python3-pip | ||
RUN pip3 install torch==2.2.2 torchvision --trusted-host download.pytorch.org --index-url https://download.pytorch.org/whl/cpu | ||
RUN pip3 install intel-extension-for-pytorch==2.2.0 | ||
RUN pip3 install transformers sentence-transformers | ||
RUN pip3 install llmspec mosec | ||
|
||
RUN cd /root/ && export HF_ENDPOINT=https://hf-mirror.com && huggingface-cli download --resume-download BAAI/bge-reranker-large --local-dir /root/bge-reranker-large | ||
|
||
ENV EMB_MODEL="/root/bge-reranker-large/" | ||
|
||
WORKDIR /root/comps/reranks/langchain-mosec/mosec-docker | ||
|
||
CMD ["python3", "server-ipex.py"] |
172 changes: 172 additions & 0 deletions
172
comps/reranks/langchain-mosec/mosec-docker/server-ipex.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
import os | ||
from os import environ | ||
from typing import Any, Dict, List, Optional, Union | ||
|
||
import intel_extension_for_pytorch as ipex | ||
import numpy as np | ||
import torch | ||
from mosec import Server, Worker | ||
from mosec.mixin import TypedMsgPackMixin | ||
from msgspec import Struct | ||
from sentence_transformers import CrossEncoder | ||
from torch.utils.data import DataLoader | ||
from tqdm.autonotebook import tqdm, trange | ||
|
||
DEFAULT_MODEL = "/root/bge-reranker-large" | ||
|
||
|
||
class MyCrossEncoder(CrossEncoder): | ||
def __init__( | ||
self, | ||
model_name: str, | ||
num_labels: int = None, | ||
max_length: int = None, | ||
device: str = None, | ||
tokenizer_args: Dict = None, | ||
automodel_args: Dict = None, | ||
trust_remote_code: bool = False, | ||
revision: Optional[str] = None, | ||
local_files_only: bool = False, | ||
default_activation_function=None, | ||
classifier_dropout: float = None, | ||
) -> None: | ||
super().__init__( | ||
model_name, | ||
num_labels, | ||
max_length, | ||
device, | ||
tokenizer_args, | ||
automodel_args, | ||
trust_remote_code, | ||
revision, | ||
local_files_only, | ||
default_activation_function, | ||
classifier_dropout, | ||
) | ||
# jit trace model | ||
self.model = ipex.optimize(self.model, dtype=torch.float32) | ||
vocab_size = self.model.config.vocab_size | ||
batch_size = 16 | ||
seq_length = 512 | ||
d = torch.randint(vocab_size, size=[batch_size, seq_length]) | ||
# t = torch.randint(0, 1, size=[batch_size, seq_length]) | ||
m = torch.randint(1, 2, size=[batch_size, seq_length]) | ||
self.model = torch.jit.trace(self.model, [d, m], check_trace=False, strict=False) | ||
self.model = torch.jit.freeze(self.model) | ||
|
||
def predict( | ||
self, | ||
sentences: List[List[str]], | ||
batch_size: int = 32, | ||
show_progress_bar: bool = None, | ||
num_workers: int = 0, | ||
activation_fct=None, | ||
apply_softmax=False, | ||
convert_to_numpy: bool = True, | ||
convert_to_tensor: bool = False, | ||
) -> Union[List[float], np.ndarray, torch.Tensor]: | ||
input_was_string = False | ||
if isinstance(sentences[0], str): # Cast an individual sentence to a list with length 1 | ||
sentences = [sentences] | ||
input_was_string = True | ||
|
||
inp_dataloader = DataLoader( | ||
sentences, | ||
batch_size=batch_size, | ||
collate_fn=self.smart_batching_collate_text_only, | ||
num_workers=num_workers, | ||
shuffle=False, | ||
) | ||
|
||
iterator = inp_dataloader | ||
if show_progress_bar: | ||
iterator = tqdm(inp_dataloader, desc="Batches") | ||
|
||
if activation_fct is None: | ||
activation_fct = self.default_activation_function | ||
|
||
pred_scores = [] | ||
self.model.eval() | ||
self.model.to(self._target_device) | ||
with torch.no_grad(): | ||
for features in iterator: | ||
model_predictions = self.model(**features) | ||
logits = activation_fct(model_predictions["logits"]) | ||
|
||
if apply_softmax and len(logits[0]) > 1: | ||
logits = torch.nn.functional.softmax(logits, dim=1) | ||
pred_scores.extend(logits) | ||
|
||
if self.config.num_labels == 1: | ||
pred_scores = [score[0] for score in pred_scores] | ||
|
||
if convert_to_tensor: | ||
pred_scores = torch.stack(pred_scores) | ||
elif convert_to_numpy: | ||
pred_scores = np.asarray([score.cpu().detach().numpy() for score in pred_scores]) | ||
|
||
if input_was_string: | ||
pred_scores = pred_scores[0] | ||
|
||
return pred_scores | ||
|
||
|
||
class Request(Struct, kw_only=True): | ||
query: str | ||
docs: List[str] | ||
|
||
|
||
class Response(Struct, kw_only=True): | ||
scores: List[float] | ||
|
||
|
||
def float_handler(o): | ||
if isinstance(o, float): | ||
return format(o, ".10f") | ||
raise TypeError("Not serializable") | ||
|
||
|
||
class MosecReranker(Worker): | ||
def __init__(self): | ||
self.model_name = environ.get("MODEL_NAME", DEFAULT_MODEL) | ||
self.model = MyCrossEncoder(self.model_name) | ||
|
||
def serialize(self, data: Response) -> bytes: | ||
sorted_list = sorted(data.scores, reverse=True) | ||
index_sorted = [data.scores.index(i) for i in sorted_list] | ||
res = [] | ||
for i, s in zip(index_sorted, sorted_list): | ||
tmp = {"index": i, "score": "{:.10f}".format(s)} | ||
res.append(tmp) | ||
return json.dumps(res, default=float_handler).encode("utf-8") | ||
|
||
def forward(self, data: List[Request]) -> List[Response]: | ||
sentence_pairs = [] | ||
inputs_lens = [] | ||
for d in data: | ||
inputs_lens.append(len(d["texts"])) | ||
tmp = [[d["query"], doc] for doc in d["texts"]] | ||
sentence_pairs.extend(tmp) | ||
|
||
scores = self.model.predict(sentence_pairs) | ||
scores = scores.tolist() | ||
|
||
resp = [] | ||
cur_idx = 0 | ||
for lens in inputs_lens: | ||
resp.append(Response(scores=scores[cur_idx : cur_idx + lens])) | ||
cur_idx += lens | ||
|
||
return resp | ||
|
||
|
||
if __name__ == "__main__": | ||
MAX_BATCH_SIZE = int(os.environ.get("MAX_BATCH_SIZE", 128)) | ||
MAX_WAIT_TIME = int(os.environ.get("MAX_WAIT_TIME", 10)) | ||
server = Server() | ||
server.append_worker(MosecReranker, max_batch_size=MAX_BATCH_SIZE, max_wait_time=MAX_WAIT_TIME) | ||
server.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
docarray[full] | ||
fastapi | ||
langchain | ||
langchain_community | ||
openai | ||
opentelemetry-api | ||
opentelemetry-exporter-otlp | ||
opentelemetry-sdk | ||
shortuuid |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# Copyright 2024 MOSEC Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
import os | ||
import re | ||
import time | ||
|
||
import requests | ||
from langchain_core.prompts import ChatPromptTemplate | ||
from langsmith import traceable | ||
|
||
from comps import ( | ||
LLMParamsDoc, | ||
SearchedDoc, | ||
ServiceType, | ||
opea_microservices, | ||
register_microservice, | ||
register_statistics, | ||
statistics_dict, | ||
) | ||
|
||
|
||
@register_microservice( | ||
name="opea_service@reranking_mosec_xeon", | ||
service_type=ServiceType.RERANK, | ||
endpoint="/v1/reranking", | ||
host="0.0.0.0", | ||
port=8000, | ||
input_datatype=SearchedDoc, | ||
output_datatype=LLMParamsDoc, | ||
) | ||
@traceable(run_type="llm") | ||
@register_statistics(names=["opea_service@reranking_mosec_xeon"]) | ||
def reranking(input: SearchedDoc) -> LLMParamsDoc: | ||
print("reranking input: ", input) | ||
start = time.time() | ||
docs = [doc.text for doc in input.retrieved_docs] | ||
url = mosec_reranking_endpoint + "/inference" | ||
data = {"query": input.initial_query, "texts": docs} | ||
headers = {"Content-Type": "application/json"} | ||
response = requests.post(url, data=json.dumps(data), headers=headers) | ||
response_data = response.json() | ||
best_response = max(response_data, key=lambda response: response["score"]) | ||
doc = input.retrieved_docs[best_response["index"]] | ||
if doc.text and len(re.findall("[\u4E00-\u9FFF]", doc.text)) / len(doc.text) >= 0.3: | ||
# chinese context | ||
template = "仅基于以下背景回答问题:\n{context}\n问题: {question}" | ||
else: | ||
template = """Answer the question based only on the following context: | ||
{context} | ||
Question: {question} | ||
""" | ||
prompt = ChatPromptTemplate.from_template(template) | ||
final_prompt = prompt.format(context=doc.text, question=input.initial_query) | ||
statistics_dict["opea_service@reranking_mosec_xeon"].append_latency(time.time() - start, None) | ||
return LLMParamsDoc(query=final_prompt.strip()) | ||
|
||
|
||
if __name__ == "__main__": | ||
mosec_reranking_endpoint = os.getenv("MOSEC_RERANKING_ENDPOINT", "http://localhost:8080") | ||
opea_microservices["opea_service@reranking_mosec_xeon"].start() |
Oops, something went wrong.