Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update doc according to comments #805

Merged
merged 6 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions ChatQnA/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ ChatQnA architecture shows below:

![architecture](./assets/img/chatqna_architecture.png)

ChatQnA is implemented on top of [GenAIComps](https://github.com/opea-project/GenAIComps), the ChatQnA Flow Chart shows below:
The ChatQnA example is implemented using the component-level microservices defined in [GenAIComps](https://github.com/opea-project/GenAIComps). The flow chart below shows the information flow between different microservices for this example.

```mermaid
---
Expand Down Expand Up @@ -95,8 +95,7 @@ flowchart LR

```

This ChatQnA use case performs RAG using LangChain, Redis VectorDB and Text Generation Inference on Intel Gaudi2 or Intel Xeon Scalable Processors. The Intel Gaudi2 accelerator supports both training and inference for deep learning models in particular for LLMs. Visit [Habana AI products](https://habana.ai/products) for more details.

This ChatQnA use case performs RAG using LangChain, Redis VectorDB and Text Generation Inference on [Intel Gaudi2](https://www.intel.com/content/www/us/en/products/details/processors/ai-accelerators/gaudi-overview.html) or [Intel Xeon Scalable Processors](https://www.intel.com/content/www/us/en/products/details/processors/xeon.html).
In the below, we provide a table that describes for each microservice component in the ChatQnA architecture, the default configuration of the open source project, hardware, port, and endpoint.

<details>
Expand Down
2 changes: 1 addition & 1 deletion CodeTrans/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ The workflow falls into the following architecture:

![architecture](./assets/img/code_trans_architecture.png)

This Code Translation use case uses Text Generation Inference on Intel Gaudi2 or Intel Xeon Scalable Processor. The Intel Gaudi2 accelerator supports both training and inference for deep learning models in particular for LLMs. Visit [Habana AI products](https://habana.ai/products) for more details.
This Code Translation use case demonstrates Text Generation Inference across multiple platforms. Currently, we provide examples for [Intel Gaudi2](https://www.intel.com/content/www/us/en/products/details/processors/ai-accelerators/gaudi-overview.html) and [Intel Xeon Scalable Processors](https://www.intel.com/content/www/us/en/products/details/processors/xeon.html), and we invite contributions from other hardware vendors to expand OPEA ecosystem.

## Deploy Code Translation Service

Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

## Introduction

GenAIComps-based Generative AI examples offer streamlined deployment, testing, and scalability. All examples are fully compatible with Docker and Kubernetes, supporting a wide range of hardware platforms such as Gaudi, Xeon, and other hardwares.
GenAIExamples are designed to give developers an easy entry into generative AI, featuring microservice-based samples that simplify the processes of deploying, testing, and scaling GenAI applications. All examples are fully compatible with Docker and Kubernetes, supporting a wide range of hardware platforms such as Gaudi, Xeon, and NVIDIA GPU, and other hardwares, ensuring flexibility and efficiency for your GenAI adoption.

## Architecture

Expand Down
Loading