-
Notifications
You must be signed in to change notification settings - Fork 1.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fix the scatter when input is cpu #1621
Conversation
Related PR #1282 |
Hi @Bilibilee , thanks for your contribution. Could you resolve the CI that failed. |
Add spaces to comply with the code specification
Hi @zhouzaida , I resolve the CI error |
Got it. It would be great if some unit tests are added at https://github.com/open-mmlab/mmcv/blob/master/tests/test_parallel.py |
Hi, could you update the from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel
from mmcv.parallel import (MODULE_WRAPPERS, MMDataParallel,
MMDistributedDataParallel, is_module_wrapper)
from mmcv.parallel._functions import Scatter, get_input_device, scatter
from mmcv.parallel.distributed_deprecated import \
MMDistributedDataParallel as DeprecatedMMDDP
def mock(*args, **kwargs):
pass
@patch('torch.distributed._broadcast_coalesced', mock)
@patch('torch.distributed.broadcast', mock)
@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
def test_is_module_wrapper():
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1)
def forward(self, x):
return self.conv(x)
# _verify_model_across_ranks is added in torch1.9.0 so we should check
# whether _verify_model_across_ranks is the member of torch.distributed
# before mocking
if hasattr(torch.distributed, '_verify_model_across_ranks'):
torch.distributed._verify_model_across_ranks = mock
model = Model()
assert not is_module_wrapper(model)
dp = DataParallel(model)
assert is_module_wrapper(dp)
mmdp = MMDataParallel(model)
assert is_module_wrapper(mmdp)
ddp = DistributedDataParallel(model, process_group=MagicMock())
assert is_module_wrapper(ddp)
mmddp = MMDistributedDataParallel(model, process_group=MagicMock())
assert is_module_wrapper(mmddp)
deprecated_mmddp = DeprecatedMMDDP(model)
assert is_module_wrapper(deprecated_mmddp)
# test module wrapper registry
@MODULE_WRAPPERS.register_module()
class ModuleWrapper(object):
def __init__(self, module):
self.module = module
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
module_wraper = ModuleWrapper(model)
assert is_module_wrapper(module_wraper)
def test_get_input_device():
# if the device is CPU, return -1
input = torch.zeros([1, 3, 3, 3])
assert get_input_device(input) == -1
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
assert get_input_device(inputs) == -1
# if the device is GPU, return the index of device
input = torch.zeros([1, 3, 3, 3]).cuda()
assert get_input_device(input) == 0
inputs = [
torch.zeros([1, 3, 3, 3]).cuda(),
torch.zeros([1, 4, 4, 4]).cuda()
]
assert get_input_device(inputs) == 0
# input should be a tensor or list of tensor
with pytest.raises(Exception):
get_input_device(5)
def test_scatter():
# if the device is CPU, just return the input
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[-1])
assert torch.allclose(input, output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[-1])
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is GPU, copy the input from CPU to GPU
if torch.cuda.is_available():
input = torch.zeros([1, 3, 3, 3])
output = scatter(input=input, devices=[0])
assert torch.allclose(input.cuda(), output)
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = scatter(input=inputs, devices=[0])
for input, output in zip(inputs, outputs):
assert torch.allclose(input.cuda(), output)
# input should be a tensor or list of tensor
with pytest.raises(Exception):
scatter(5, [-1])
def test_Scatter():
# if the device is CPU, just return the input
target_gpus = [-1]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_gpus, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input, outputs[0])
target_gpus = [-1]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_gpus, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input, output)
# if the device is GPU, copy the input from CPU to GPU
if torch.cuda.is_available():
target_gpus = [0]
input = torch.zeros([1, 3, 3, 3])
outputs = Scatter.forward(target_gpus, input)
assert isinstance(outputs, tuple)
assert torch.allclose(input.cuda(), outputs[0])
target_gpus = [0]
inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
outputs = Scatter.forward(target_gpus, inputs)
assert isinstance(outputs, tuple)
for input, output in zip(inputs, outputs):
assert torch.allclose(input.cuda(), output[0]) |
Hi @Bilibilee!First of all, we want to express our gratitude for your significant PR in the MMCV project. Your contribution is highly appreciated, and we are grateful for your efforts in helping improve this open-source project during your personal time. We believe that many developers will benefit from your PR. We would also like to invite you to join our Special Interest Group (SIG) private channel on Discord, where you can share your experiences, ideas, and build connections with like-minded peers. To join the SIG channel, simply message moderator— OpenMMLab on Discord or briefly share your open-source contributions in the #introductions channel and we will assist you. Look forward to seeing you there! Join us :https://discord.gg/UjgXkPWNqA If you have WeChat account,welcome to join our community on WeChat. You can add our assistant :openmmlabwx. Please add "mmsig + Github ID" as a remark when adding friends:) |
Motivation
According to the issue #792.
find inconsistency between GPU and GPU
the inconsistency is caused by the https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/_functions.py#L28
output = output.unsqueeze(0)
Modification
to fix the problem, I just make a simple modification:
Delete the
output = output.unsqueeze(0)
,and make the the return of Scatter.forward betuple(outputs) if isinstance(outputs,list) else (outputs,)
so that,without the unsqueeze(0),the cpu and gpu have same shape.