-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
194 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# data settings | ||
|
||
data_preprocessor = dict( | ||
mean=[122.770938, 116.7460125, 104.09373615], | ||
std=[68.5005327, 66.6321579, 70.32316305], | ||
to_rgb=True, | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='RandomResizedCrop', | ||
scale=384, | ||
interpolation='bicubic', | ||
backend='pillow'), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], | ||
meta_keys=['question_id', 'image_id'], | ||
), | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='Resize', | ||
scale=(480, 480), | ||
interpolation='bicubic', | ||
backend='pillow'), | ||
dict( | ||
type='CleanCaption', | ||
keys=['question'], | ||
), | ||
dict( | ||
type='PackInputs', | ||
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], | ||
meta_keys=['question_id', 'image_id'], | ||
), | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=16, | ||
num_workers=8, | ||
dataset=dict( | ||
type='VizWiz', | ||
data_root='data/vizwiz/Images', | ||
data_prefix='', | ||
ann_file='Annotations/train.json', | ||
pipeline=train_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
persistent_workers=True, | ||
drop_last=True, | ||
) | ||
|
||
val_dataloader = dict( | ||
batch_size=16, | ||
num_workers=8, | ||
dataset=dict( | ||
type='VizWiz', | ||
data_root='data/vizwiz/Images', | ||
data_prefix='', | ||
ann_file='Annotations/val.json', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
persistent_workers=True, | ||
) | ||
val_evaluator = dict(type='VizWizAcc') | ||
|
||
test_dataloader = dict( | ||
batch_size=16, | ||
num_workers=8, | ||
dataset=dict( | ||
type='VizWiz', | ||
data_root='data/vizwiz/Images', | ||
data_prefix='', | ||
ann_file='Annotations/test.json', | ||
pipeline=test_pipeline), | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
) | ||
test_evaluator = dict(type='ReportVQA', file_path='vqa_test.json') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from collections import Counter | ||
from typing import List | ||
|
||
import mmengine | ||
from mmengine.dataset import BaseDataset | ||
|
||
from mmpretrain.registry import DATASETS | ||
|
||
|
||
@DATASETS.register_module() | ||
class VizWiz(BaseDataset): | ||
"""VizWiz dataset. | ||
Args: | ||
data_root (str): The root directory for ``data_prefix``, ``ann_file`` | ||
and ``question_file``. | ||
data_prefix (str): The directory of images. | ||
ann_file (str, optional): Annotation file path for training and | ||
validation. Defaults to an empty string. | ||
**kwargs: Other keyword arguments in :class:`BaseDataset`. | ||
""" | ||
|
||
def __init__(self, | ||
data_root: str, | ||
data_prefix: str, | ||
ann_file: str = '', | ||
**kwarg): | ||
super().__init__( | ||
data_root=data_root, | ||
data_prefix=dict(img_path=data_prefix), | ||
ann_file=ann_file, | ||
**kwarg, | ||
) | ||
|
||
def load_data_list(self) -> List[dict]: | ||
"""Load data list.""" | ||
annotations = mmengine.load(self.ann_file) | ||
|
||
data_list = [] | ||
for ann in annotations: | ||
# { | ||
# "image": "VizWiz_val_00000001.jpg", | ||
# "question": "Can you tell me what this medicine is please?", | ||
# "answers": [ | ||
# { | ||
# "answer": "no", | ||
# "answer_confidence": "yes" | ||
# }, | ||
# { | ||
# "answer": "unanswerable", | ||
# "answer_confidence": "yes" | ||
# }, | ||
# { | ||
# "answer": "night time", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "unanswerable", | ||
# "answer_confidence": "yes" | ||
# }, | ||
# { | ||
# "answer": "night time", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "night time cold medicine", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "night time", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "night time", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "night time", | ||
# "answer_confidence": "maybe" | ||
# }, | ||
# { | ||
# "answer": "night time medicine", | ||
# "answer_confidence": "yes" | ||
# } | ||
# ], | ||
# "answer_type": "other", | ||
# "answerable": 1 | ||
# }, | ||
data_info = dict() | ||
data_info['question'] = ann['question'] | ||
data_info['img_path'] = mmengine.join_path( | ||
self.data_prefix['img_path'], ann['image']) | ||
|
||
if 'answerable' not in ann: | ||
data_list.append(data_info) | ||
else: | ||
if ann['answerable'] == 1: | ||
# add answer_weight & answer_count, delete duplicate answer | ||
answers = [] | ||
for item in ann.pop('answers'): | ||
if item['answer_confidence'] == 'yes' and item[ | ||
'answer'] != 'unanswerable': | ||
answers.append(item['answer']) | ||
count = Counter(answers) | ||
answer_weight = [i / len(answers) for i in count.values()] | ||
data_info['gt_answer'] = list(count.keys()) | ||
data_info['gt_answer_weight'] = answer_weight | ||
# data_info.update(ann) | ||
data_list.append(data_info) | ||
|
||
return data_list |