Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix nested field missing sub embedding field #913

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
### Enhancements
- Set neural-search plugin 3.0.0 baseline JDK version to JDK-2 ([#838](https://github.com/opensearch-project/neural-search/pull/838))
### Bug Fixes
- Fix for nested field missing sub embedding field in text embedding processor ([#913](https://github.com/opensearch-project/neural-search/pull/913))
### Infrastructure
### Documentation
### Maintenance
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
Expand Down Expand Up @@ -285,7 +286,7 @@ private void createInferenceListForMapTypeInput(Object sourceValue, List<String>
if (sourceValue instanceof Map) {
((Map<String, Object>) sourceValue).forEach((k, v) -> createInferenceListForMapTypeInput(v, texts));
} else if (sourceValue instanceof List) {
texts.addAll(((List<String>) sourceValue));
((List<String>) sourceValue).stream().filter(Objects::nonNull).forEach(texts::add);
} else {
if (sourceValue == null) return;
texts.add(sourceValue.toString());
Expand Down Expand Up @@ -419,8 +420,12 @@ private void putNLPResultToSourceMapForMapType(
for (Map.Entry<String, Object> inputNestedMapEntry : ((Map<String, Object>) sourceValue).entrySet()) {
if (sourceAndMetadataMap.get(processorKey) instanceof List) {
// build nlp output for list of nested objects
Iterator<Object> inputNestedMapValueIt = ((List<Object>) inputNestedMapEntry.getValue()).iterator();
for (Map<String, Object> nestedElement : (List<Map<String, Object>>) sourceAndMetadataMap.get(processorKey)) {
nestedElement.put(inputNestedMapEntry.getKey(), results.get(indexWrapper.index++));
// Only fill in when value is not null
if (inputNestedMapValueIt.hasNext() && inputNestedMapValueIt.next() != null) {
nestedElement.put(inputNestedMapEntry.getKey(), results.get(indexWrapper.index++));
}
}
} else {
Pair<String, Object> processedNestedKey = processNestedKey(inputNestedMapEntry);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ public void test_batchExecute_emptyInput() {
verify(clientAccessor, never()).inferenceSentences(anyString(), anyList(), any());
}

public void test_batchExecute_allFailedValidation() {
public void test_batchExecuteWithEmpty_allFailedValidation() {
final int docCount = 2;
TestInferenceProcessor processor = new TestInferenceProcessor(createMockVectorResult(), BATCH_SIZE, null);
List<IngestDocumentWrapper> wrapperList = createIngestDocumentWrappers(docCount);
Expand All @@ -79,6 +79,29 @@ public void test_batchExecute_allFailedValidation() {
assertEquals(docCount, captor.getValue().size());
for (int i = 0; i < docCount; ++i) {
assertNotNull(captor.getValue().get(i).getException());
assertEquals(
"list type field [key1] has empty string, cannot process it",
captor.getValue().get(i).getException().getMessage()
);
assertEquals(wrapperList.get(i).getIngestDocument(), captor.getValue().get(i).getIngestDocument());
}
verify(clientAccessor, never()).inferenceSentences(anyString(), anyList(), any());
}

public void test_batchExecuteWithNull_allFailedValidation() {
final int docCount = 2;
TestInferenceProcessor processor = new TestInferenceProcessor(createMockVectorResult(), BATCH_SIZE, null);
List<IngestDocumentWrapper> wrapperList = createIngestDocumentWrappers(docCount);
wrapperList.get(0).getIngestDocument().setFieldValue("key1", Arrays.asList(null, "value1"));
wrapperList.get(1).getIngestDocument().setFieldValue("key1", Arrays.asList(null, "value1"));
Consumer resultHandler = mock(Consumer.class);
processor.batchExecute(wrapperList, resultHandler);
ArgumentCaptor<List<IngestDocumentWrapper>> captor = ArgumentCaptor.forClass(List.class);
verify(resultHandler).accept(captor.capture());
assertEquals(docCount, captor.getValue().size());
for (int i = 0; i < docCount; ++i) {
assertNotNull(captor.getValue().get(i).getException());
assertEquals("list type field [key1] has null, cannot process it", captor.getValue().get(i).getException().getMessage());
assertEquals(wrapperList.get(i).getIngestDocument(), captor.getValue().get(i).getIngestDocument());
}
verify(clientAccessor, never()).inferenceSentences(anyString(), anyList(), any());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -310,5 +310,14 @@ private void ingestBatchDocumentWithBulk(String idPrefix, int docCount, Set<Inte
);
assertEquals(!failedIds.isEmpty(), map.get("errors"));
assertEquals(docCount, ((List) map.get("items")).size());

int failedDocCount = 0;
for (Object item : ((List) map.get("items"))) {
Map<String, Map<String, Object>> itemMap = (Map<String, Map<String, Object>>) item;
if (itemMap.get("index").get("error") != null) {
failedDocCount++;
}
}
assertEquals(failedIds.size(), failedDocCount);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -730,7 +730,7 @@ public void testBuildVectorOutput_withNestedList_successful() {
IngestDocument ingestDocument = createNestedListIngestDocument();
TextEmbeddingProcessor textEmbeddingProcessor = createInstanceWithNestedMapConfiguration(config);
Map<String, Object> knnMap = textEmbeddingProcessor.buildMapWithTargetKeys(ingestDocument);
List<List<Float>> modelTensorList = createMockVectorResult();
List<List<Float>> modelTensorList = createRandomOneDimensionalMockVector(2, 2, 0.0f, 1.0f);
wdongyu marked this conversation as resolved.
Show resolved Hide resolved
textEmbeddingProcessor.buildNLPResult(knnMap, modelTensorList, ingestDocument.getSourceAndMetadata());
List<Map<String, Object>> nestedObj = (List<Map<String, Object>>) ingestDocument.getSourceAndMetadata().get("nestedField");
assertTrue(nestedObj.get(0).containsKey("vectorField"));
Expand All @@ -739,12 +739,27 @@ public void testBuildVectorOutput_withNestedList_successful() {
assertNotNull(nestedObj.get(1).get("vectorField"));
}

@SuppressWarnings("unchecked")
public void testBuildVectorOutput_withNestedListHasNotForEmbeddingField_successful() {
Map<String, Object> config = createNestedListConfiguration();
IngestDocument ingestDocument = createNestedListWithNotEmbeddingFieldIngestDocument();
TextEmbeddingProcessor textEmbeddingProcessor = createInstanceWithNestedMapConfiguration(config);
Map<String, Object> knnMap = textEmbeddingProcessor.buildMapWithTargetKeys(ingestDocument);
List<List<Float>> modelTensorList = createRandomOneDimensionalMockVector(1, 2, 0.0f, 1.0f);
textEmbeddingProcessor.buildNLPResult(knnMap, modelTensorList, ingestDocument.getSourceAndMetadata());
List<Map<String, Object>> nestedObj = (List<Map<String, Object>>) ingestDocument.getSourceAndMetadata().get("nestedField");
wdongyu marked this conversation as resolved.
Show resolved Hide resolved
assertFalse(nestedObj.get(0).containsKey("vectorField"));
assertTrue(nestedObj.get(0).containsKey("textFieldNotForEmbedding"));
assertTrue(nestedObj.get(1).containsKey("vectorField"));
assertNotNull(nestedObj.get(1).get("vectorField"));
}

public void testBuildVectorOutput_withNestedList_Level2_successful() {
Map<String, Object> config = createNestedList2LevelConfiguration();
IngestDocument ingestDocument = create2LevelNestedListIngestDocument();
TextEmbeddingProcessor textEmbeddingProcessor = createInstanceWithNestedMapConfiguration(config);
Map<String, Object> knnMap = textEmbeddingProcessor.buildMapWithTargetKeys(ingestDocument);
List<List<Float>> modelTensorList = createMockVectorResult();
List<List<Float>> modelTensorList = createRandomOneDimensionalMockVector(2, 2, 0.0f, 1.0f);
wdongyu marked this conversation as resolved.
Show resolved Hide resolved
textEmbeddingProcessor.buildNLPResult(knnMap, modelTensorList, ingestDocument.getSourceAndMetadata());
Map<String, Object> nestedLevel1 = (Map<String, Object>) ingestDocument.getSourceAndMetadata().get("nestedField");
List<Map<String, Object>> nestedObj = (List<Map<String, Object>>) nestedLevel1.get("nestedField");
Expand All @@ -754,6 +769,22 @@ public void testBuildVectorOutput_withNestedList_Level2_successful() {
assertNotNull(nestedObj.get(1).get("vectorField"));
}

@SuppressWarnings("unchecked")
public void testBuildVectorOutput_withNestedListHasNotForEmbeddingField_Level2_successful() {
Map<String, Object> config = createNestedList2LevelConfiguration();
IngestDocument ingestDocument = create2LevelNestedListWithNotEmbeddingFieldIngestDocument();
TextEmbeddingProcessor textEmbeddingProcessor = createInstanceWithNestedMapConfiguration(config);
Map<String, Object> knnMap = textEmbeddingProcessor.buildMapWithTargetKeys(ingestDocument);
List<List<Float>> modelTensorList = createRandomOneDimensionalMockVector(1, 2, 0.0f, 1.0f);
textEmbeddingProcessor.buildNLPResult(knnMap, modelTensorList, ingestDocument.getSourceAndMetadata());
Map<String, Object> nestedLevel1 = (Map<String, Object>) ingestDocument.getSourceAndMetadata().get("nestedField");
List<Map<String, Object>> nestedObj = (List<Map<String, Object>>) nestedLevel1.get("nestedField");
wdongyu marked this conversation as resolved.
Show resolved Hide resolved
assertFalse(nestedObj.get(0).containsKey("vectorField"));
assertTrue(nestedObj.get(0).containsKey("textFieldNotForEmbedding"));
assertTrue(nestedObj.get(1).containsKey("vectorField"));
assertNotNull(nestedObj.get(1).get("vectorField"));
}

public void test_updateDocument_appendVectorFieldsToDocument_successful() {
Map<String, Object> config = createPlainStringConfiguration();
IngestDocument ingestDocument = createPlainIngestDocument();
Expand Down Expand Up @@ -1039,6 +1070,16 @@ private IngestDocument createNestedListIngestDocument() {
return new IngestDocument(nestedList, new HashMap<>());
}

private IngestDocument createNestedListWithNotEmbeddingFieldIngestDocument() {
HashMap<String, Object> nestedObj1 = new HashMap<>();
nestedObj1.put("textFieldNotForEmbedding", "This is a text field");
HashMap<String, Object> nestedObj2 = new HashMap<>();
nestedObj2.put("textField", "This is another text field");
HashMap<String, Object> nestedList = new HashMap<>();
nestedList.put("nestedField", Arrays.asList(nestedObj1, nestedObj2));
return new IngestDocument(nestedList, new HashMap<>());
}

private IngestDocument create2LevelNestedListIngestDocument() {
HashMap<String, Object> nestedObj1 = new HashMap<>();
nestedObj1.put("textField", "This is a text field");
Expand All @@ -1050,4 +1091,16 @@ private IngestDocument create2LevelNestedListIngestDocument() {
nestedList1.put("nestedField", nestedList);
return new IngestDocument(nestedList1, new HashMap<>());
}

private IngestDocument create2LevelNestedListWithNotEmbeddingFieldIngestDocument() {
HashMap<String, Object> nestedObj1 = new HashMap<>();
nestedObj1.put("textFieldNotForEmbedding", "This is a text field");
HashMap<String, Object> nestedObj2 = new HashMap<>();
nestedObj2.put("textField", "This is another text field");
HashMap<String, Object> nestedList = new HashMap<>();
nestedList.put("nestedField", Arrays.asList(nestedObj1, nestedObj2));
HashMap<String, Object> nestedList1 = new HashMap<>();
nestedList1.put("nestedField", nestedList);
return new IngestDocument(nestedList1, new HashMap<>());
}
}
3 changes: 3 additions & 0 deletions src/test/resources/processor/IndexMappings.json
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,9 @@
"text": {
"type": "text"
},
"text_not_for_embedding": {
"type": "text"
},
"embedding": {
"type": "knn_vector",
"dimension": 768,
Expand Down
3 changes: 3 additions & 0 deletions src/test/resources/processor/ingest_doc1.json
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@
"movie": null
},
"nested_passages": [
{
"text_not_for_embedding": "test"
},
{
"text": "hello"
},
Expand Down
3 changes: 3 additions & 0 deletions src/test/resources/processor/ingest_doc2.json
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,9 @@
"movie": null
},
"nested_passages": [
{
"text_not_for_embedding": "test"
},
{
"text": "apple"
},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -203,6 +203,7 @@ protected void loadModel(final String modelId) throws Exception {
isComplete = checkComplete(taskQueryResult);
Thread.sleep(DEFAULT_TASK_RESULT_QUERY_INTERVAL_IN_MILLISECOND);
}
assertTrue(isComplete);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice catch!

}

/**
Expand Down
Loading