-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
215 additions
and
41 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
// Taken from https://github.com/laksjdjf/cgem156-ComfyUI/blob/1f5533f7f31345bafe4b833cbee15a3c4ad74167/js/attention_couple.js | ||
import { app } from "/scripts/app.js"; | ||
|
||
app.registerExtension({ | ||
name: "AttentionCouplePPM", | ||
async beforeRegisterNodeDef(nodeType, nodeData) { | ||
if (nodeData.name === "AttentionCouplePPM") { | ||
const origGetExtraMenuOptions = nodeType.prototype.getExtraMenuOptions; | ||
nodeType.prototype.getExtraMenuOptions = function (_, options) { | ||
const r = origGetExtraMenuOptions?.apply?.(this, arguments); | ||
options.unshift( | ||
{ | ||
content: "Add Region", | ||
callback: () => { | ||
var index = 1; | ||
if (this.inputs != undefined) { | ||
index += this.inputs.length; | ||
} | ||
this.addInput("cond_" + Math.floor(index / 2), "CONDITIONING"); | ||
this.addInput("mask_" + Math.floor(index / 2), "MASK"); | ||
}, | ||
}, | ||
{ | ||
content: "Remove Region", | ||
callback: () => { | ||
if (this.inputs != undefined && this.inputs.at(-2)["type"] === "CONDITIONING") { | ||
this.removeInput(this.inputs.length - 1); | ||
this.removeInput(this.inputs.length - 1); | ||
} | ||
}, | ||
}, | ||
); | ||
return r; | ||
|
||
} | ||
} | ||
}, | ||
}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# Modified samplers from Euler-Smea-Dyn-Sampler by Koishi-Star | ||
from tqdm.auto import trange | ||
import torch | ||
|
||
from comfy.k_diffusion import sampling | ||
import comfy.model_patcher | ||
|
||
|
||
class _Rescaler: | ||
def __init__(self, model, x, mode, **extra_args): | ||
self.model = model | ||
self.x = x | ||
self.mode = mode | ||
self.extra_args = extra_args | ||
|
||
self.latent_image, self.noise = model.latent_image, model.noise | ||
self.denoise_mask = self.extra_args.get("denoise_mask", None) | ||
|
||
def __enter__(self): | ||
if self.latent_image is not None: | ||
self.model.latent_image = torch.nn.functional.interpolate(input=self.latent_image, size=self.x.shape[2:4], mode=self.mode) | ||
if self.noise is not None: | ||
self.model.noise = torch.nn.functional.interpolate(input=self.latent_image, size=self.x.shape[2:4], mode=self.mode) | ||
if self.denoise_mask is not None: | ||
self.extra_args["denoise_mask"] = torch.nn.functional.interpolate(input=self.denoise_mask, size=self.x.shape[2:4], mode=self.mode) | ||
|
||
return self | ||
|
||
def __exit__(self, type, value, traceback): | ||
del self.model.latent_image, self.model.noise | ||
self.model.latent_image, self.model.noise = self.latent_image, self.noise | ||
|
||
|
||
@torch.no_grad() | ||
def dy_sampling_step_cfg_pp(x, model, sigma_next, sigma_hat, **extra_args): | ||
temp = [0] | ||
def post_cfg_function(args): | ||
temp[0] = args["uncond_denoised"] | ||
return args["denoised"] | ||
|
||
model_options = extra_args.get("model_options", {}).copy() | ||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) | ||
|
||
original_shape = x.shape | ||
batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2 | ||
extra_row = x.shape[2] % 2 == 1 | ||
extra_col = x.shape[3] % 2 == 1 | ||
|
||
if extra_row: | ||
extra_row_content = x[:, :, -1:, :] | ||
x = x[:, :, :-1, :] | ||
if extra_col: | ||
extra_col_content = x[:, :, :, -1:] | ||
x = x[:, :, :, :-1] | ||
|
||
a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2) | ||
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n) | ||
|
||
with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler: | ||
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args) | ||
d = sampling.to_d(c, sigma_hat, temp[0]) | ||
c = denoised + d * sigma_next | ||
|
||
d_list = c.view(batch_size, channels, m * n, 1, 1) | ||
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0] | ||
x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n) | ||
|
||
if extra_row or extra_col: | ||
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device) | ||
x_expanded[:, :, :2 * m, :2 * n] = x | ||
if extra_row: | ||
x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content | ||
if extra_col: | ||
x_expanded[:, :, :2 * m, -1:] = extra_col_content | ||
if extra_row and extra_col: | ||
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :] | ||
x = x_expanded | ||
|
||
return x | ||
|
||
|
||
@torch.no_grad() | ||
def sample_euler_dy_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., | ||
s_tmax=float('inf'), s_noise=1., s_gamma=None): | ||
extra_args = {} if extra_args is None else extra_args | ||
s_in = x.new_ones([x.shape[0]]) | ||
|
||
temp = [0] | ||
def post_cfg_function(args): | ||
temp[0] = args["uncond_denoised"] | ||
return args["denoised"] | ||
|
||
model_options = extra_args.get("model_options", {}).copy() | ||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) | ||
|
||
for i in trange(len(sigmas) - 1, disable=disable): | ||
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | ||
if s_gamma is not None: | ||
gamma = s_gamma | ||
sigma_hat = sigmas[i] * (gamma + 1) | ||
# print(sigma_hat) | ||
dt = sigmas[i + 1] - sigma_hat | ||
if gamma > 0: | ||
eps = torch.randn_like(x) * s_noise | ||
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | ||
denoised = model(x, sigma_hat * s_in, **extra_args) | ||
d = sampling.to_d(x, sigma_hat, temp[0]) | ||
# Euler method | ||
x = denoised + d * sigmas[i + 1] | ||
if sigmas[i + 1] > 0: | ||
if i // 2 == 1: | ||
x = dy_sampling_step_cfg_pp(x, model, sigmas[i + 1], sigma_hat, **extra_args) | ||
if callback is not None: | ||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | ||
return x | ||
|
||
|
||
@torch.no_grad() | ||
def smea_sampling_step_cfg_pp(x, model, sigma_next, sigma_hat, **extra_args): | ||
temp = [0] | ||
def post_cfg_function(args): | ||
temp[0] = args["uncond_denoised"] | ||
return args["denoised"] | ||
|
||
model_options = extra_args.get("model_options", {}).copy() | ||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) | ||
|
||
m, n = x.shape[2], x.shape[3] | ||
x = torch.nn.functional.interpolate(input=x, scale_factor=(1.25, 1.25), mode='nearest-exact') | ||
with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler: | ||
denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args) | ||
d = sampling.to_d(x, sigma_hat, temp[0]) | ||
x = denoised + d * sigma_next | ||
x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact') | ||
return x | ||
|
||
|
||
@torch.no_grad() | ||
def sample_euler_smea_dy_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., | ||
s_tmax=float('inf'), s_noise=1.): | ||
extra_args = {} if extra_args is None else extra_args | ||
s_in = x.new_ones([x.shape[0]]) | ||
|
||
temp = [0] | ||
def post_cfg_function(args): | ||
temp[0] = args["uncond_denoised"] | ||
return args["denoised"] | ||
|
||
model_options = extra_args.get("model_options", {}).copy() | ||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) | ||
|
||
for i in trange(len(sigmas) - 1, disable=disable): | ||
gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | ||
sigma_hat = sigmas[i] * (gamma + 1) | ||
dt = sigmas[i + 1] - sigma_hat | ||
if gamma > 0: | ||
eps = torch.randn_like(x) * s_noise | ||
x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | ||
denoised = model(x, sigma_hat * s_in, **extra_args) | ||
d = sampling.to_d(x, sigma_hat, temp[0]) | ||
# Euler method | ||
x = denoised + d * sigmas[i + 1] | ||
if sigmas[i + 1] > 0: | ||
if i + 1 // 2 == 1: | ||
x = dy_sampling_step_cfg_pp(x, model, sigmas[i + 1], sigma_hat, **extra_args) | ||
if i + 1 // 2 == 0: | ||
x = smea_sampling_step_cfg_pp(x, model, sigmas[i + 1], sigma_hat, **extra_args) | ||
if callback is not None: | ||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters