Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TST: update frame method quantile tests #59875

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 18 additions & 17 deletions pandas/tests/frame/methods/test_quantile.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

import pandas as pd
from pandas import (
DataFrame,
Expand Down Expand Up @@ -326,7 +324,6 @@ def test_quantile_multi_empty(self, interp_method):
)
tm.assert_frame_equal(result, expected)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_quantile_datetime(self, unit):
dti = pd.to_datetime(["2010", "2011"]).as_unit(unit)
df = DataFrame({"a": dti, "b": [0, 5]})
Expand Down Expand Up @@ -373,14 +370,13 @@ def test_quantile_datetime(self, unit):

# empty when numeric_only=True
result = df[["a", "c"]].quantile(0.5, numeric_only=True)
expected = Series([], index=[], dtype=np.float64, name=0.5)
expected = Series([], index=Index([], dtype="str"), dtype=np.float64, name=0.5)
tm.assert_series_equal(result, expected)

result = df[["a", "c"]].quantile([0.5], numeric_only=True)
expected = DataFrame(index=[0.5], columns=[])
expected = DataFrame(index=[0.5], columns=Index([], dtype="str"))
tm.assert_frame_equal(result, expected)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
@pytest.mark.parametrize(
"dtype",
[
Expand All @@ -398,7 +394,7 @@ def test_quantile_dt64_empty(self, dtype, interp_method):
res = df.quantile(
0.5, axis=1, numeric_only=False, interpolation=interpolation, method=method
)
expected = Series([], index=[], name=0.5, dtype=dtype)
expected = Series([], index=Index([], dtype="str"), name=0.5, dtype=dtype)
tm.assert_series_equal(res, expected)

# no columns in result, so no dtype preservation
Expand All @@ -409,7 +405,7 @@ def test_quantile_dt64_empty(self, dtype, interp_method):
interpolation=interpolation,
method=method,
)
expected = DataFrame(index=[0.5], columns=[])
expected = DataFrame(index=[0.5], columns=Index([], dtype="str"))
tm.assert_frame_equal(res, expected)

@pytest.mark.parametrize("invalid", [-1, 2, [0.5, -1], [0.5, 2]])
Expand Down Expand Up @@ -645,7 +641,6 @@ def test_quantile_nat(self, interp_method, unit):
)
tm.assert_frame_equal(res, exp)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_quantile_empty_no_rows_floats(self, interp_method):
interpolation, method = interp_method

Expand All @@ -660,11 +655,11 @@ def test_quantile_empty_no_rows_floats(self, interp_method):
tm.assert_frame_equal(res, exp)

res = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
exp = Series([], index=[], dtype="float64", name=0.5)
exp = Series([], index=Index([], dtype="str"), dtype="float64", name=0.5)
tm.assert_series_equal(res, exp)

res = df.quantile([0.5], axis=1, interpolation=interpolation, method=method)
exp = DataFrame(columns=[], index=[0.5])
exp = DataFrame(columns=Index([], dtype="str"), index=[0.5])
tm.assert_frame_equal(res, exp)

def test_quantile_empty_no_rows_ints(self, interp_method):
Expand Down Expand Up @@ -874,7 +869,6 @@ def test_quantile_ea_scalar(self, request, obj, index):
else:
tm.assert_series_equal(result, expected)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False)
@pytest.mark.parametrize(
"dtype, expected_data, expected_index, axis",
[
Expand All @@ -889,11 +883,13 @@ def test_empty_numeric(self, dtype, expected_data, expected_index, axis):
df = DataFrame(columns=["a", "b"], dtype=dtype)
result = df.quantile(0.5, axis=axis)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype="float64"
expected_data,
name=0.5,
index=Index(expected_index, dtype="str"),
dtype="float64",
)
tm.assert_series_equal(result, expected)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False)
@pytest.mark.parametrize(
"dtype, expected_data, expected_index, axis, expected_dtype",
[
Expand All @@ -908,11 +904,13 @@ def test_empty_datelike(
df = DataFrame(columns=["a", "b"], dtype=dtype)
result = df.quantile(0.5, axis=axis, numeric_only=False)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype=expected_dtype
expected_data,
name=0.5,
index=Index(expected_index, dtype="str"),
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False)
@pytest.mark.parametrize(
"expected_data, expected_index, axis",
[
Expand All @@ -931,7 +929,10 @@ def test_datelike_numeric_only(self, expected_data, expected_index, axis):
)
result = df[["a", "c"]].quantile(0.5, axis=axis, numeric_only=True)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype=np.float64
expected_data,
name=0.5,
index=Index(expected_index, dtype="str" if axis == 0 else "int64"),
dtype=np.float64,
)
tm.assert_series_equal(result, expected)

Expand Down
Loading