Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ticdc: add ticdc-avro-protocol.md #8740

Merged
merged 11 commits into from
Jun 2, 2022
1 change: 1 addition & 0 deletions TOC.md
Original file line number Diff line number Diff line change
Expand Up @@ -473,6 +473,7 @@
- [Alert Rules](/ticdc/ticdc-alert-rules.md)
- [TiCDC OpenAPI](/ticdc/ticdc-open-api.md)
- [TiCDC Open Protocol](/ticdc/ticdc-open-protocol.md)
- [TiCDC Avro Protocol](/ticdc/ticdc-avro-protocol.md)
- [TiCDC Canal-JSON Protocol](/ticdc/ticdc-canal-json.md)
- [Integrate TiDB with Confluent Platform](/ticdc/integrate-confluent-using-ticdc.md)
- [Glossary](/ticdc/ticdc-glossary.md)
Expand Down
260 changes: 260 additions & 0 deletions ticdc/ticdc-avro-protocol.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
---
title: TiCDC Avro Protocol
summary: Learn the concept of TiCDC Avro Protocol and how to use it.
---

# TiCDC Avro Protocol

Avro is a data exchange format protocol defined by [Apache Avro™](https://avro.apache.org/) and chosen by [Confluent Platform](https://docs.confluent.io/platform/current/platform.html) as the default data exchange format. This document describes the implementation of the Avro data format in TiCDC, including TiDB extension fields, definition of the Avro data format, and the interaction between Avro and [Confluent Schema Registry](https://docs.confluent.io/platform/current/schema-registry/index.html).

## Use Avro

When using Message Queue (MQ) as a downstream sink, you can specify Avro in `sink-uri`. TiCDC captures TiDB DML events, creates Avro messages from these events, and sends the messages downstream. When Avro detects a schema change, it registers the latest schema with Schema Registry.

The following is a configuration example using Avro:

{{< copyable "shell-regular" >}}

```shell
cdc cli changefeed create --pd=http://127.0.0.1:2379 --changefeed-id="kafka-avro" --sink-uri="kafka://127.0.0.1:9092/topic-name?kafka-version=2.6.0&protocol=avro" --schema-registry=http://127.0.0.1:8081
```

The value of `--schema-registry` supports the `https` protocol and `username:password` authentication, for example, `--schema-registry=https://username:[email protected]`. The username and password must be URL-encoded.

## TiDB extension fields

By default, Avro only collects data of changed rows in DML events and does not collect the type of data changes or TiDB-specific CommitTS (the unique identifiers of transactions). To address this issue, TiCDC introduces the following three TiDB extension fields to the Avro protocol message. When `enable-tidb-extension` is set to `true` (`false` by default) in `sink-uri`, TiCDC adds these three fields to the Avro messages during message generation.

- `_tidb_op`: The DML type. "c" indicates insert and "u" indicates updates.
- `_tidb_commit_ts`: The unique identifier of a transaction.
- `_tidb_commit_physical_time`: The physical timestamp in a transaction identifier.

The following is a configuration example:

{{< copyable "shell-regular" >}}

```shell
cdc cli changefeed create --pd=http://127.0.0.1:2379 --changefeed-id="kafka-avro-enable-extension" --sink-uri="kafka://127.0.0.1:9092/topic-name?kafka-version=2.6.0&protocol=avro&enable-tidb-extension=true" --schema-registry=http://127.0.0.1:8081
```

## Definition of the data format

TiCDC converts a DML event into a Kafka event, and the Key and Value of an event are encoded according to the Avro protocol.

### Key data format

```
{
"name":"{{TableName}}",
"namespace":"{{Namespace}}",
"type":"record",
"fields":[
{{ColumnValueBlock}},
{{ColumnValueBlock}},
]
}
```

- `{{TableName}}` indicates the name of the table where the event occurs.
- `{{Namespace}}` is the namespace of Avro.
- `{{ColumnValueBlock}}` defines the format of each column of data.

The `fields` in the key contains only primary key columns or unique index columns.

### Value data format

```
{
"name":"{{TableName}}",
"namespace":"{{Namespace}}",
"type":"record",
"fields":[
{{ColumnValueBlock}},
{{ColumnValueBlock}},
]
}
```

The data format of Value is the same as that of Key, by default. However, `fields` in the Value contains all columns, not just the primary key columns.

After you enable [`enable-tidb-extension`](#tidb-extension-fields), the data format of the Value will be as follows:

```
{
"name":"{{TableName}}",
"namespace":"{{Namespace}}",
"type":"record",
"fields":[
{{ColumnValueBlock}},
{{ColumnValueBlock}},
{
"name":"_tidb_op",
"type":"string"
},
{
"name":"_tidb_commit_ts",
"type":"long"
},
{
"name":"_tidb_commit_physical_time",
"type":"long"
}
]
}
```

Compared with the Value data format with `enable-tidb-extension` disabled, three new fields are added: `_tidb_op`, `_tidb_commit_ts`, and `_tidb_commit_physical_time`.

### Column data format

The Column data is the `{{ColumnValueBlock}}` part of the Key/Value data format. TiCDC generates the Column data format based on the SQL Type. The basic Column data format is as follows:

```
{
"name":"{{ColumnName}}",
"type":{
"connect.parameters":{
"tidb_type":"{{TIDB_TYPE}}"
},
"type":"{{AVRO_TYPE}}"
}
}
```

If one column can be NULL, the Column data format can be:

```
{
"default":null,
"name":"{{ColumnName}}",
"type":[
"null",
{
"connect.parameters":{
"tidb_type":"{{TIDB_TYPE}}"
},
"type":"{{AVRO_TYPE}}"
}
]
}
```

- `{{ColumnName}}` indicates the column name.
- `{{TIDB_TYPE}}` indicates the type in TiDB, which is not a one-to-one mapping with the SQL type.
- `{{AVRO_TYPE}}` indicates the type in [avro spec](https://avro.apache.org/docs/current/spec.html).

| SQL TYPE | TIDB_TYPE | AVRO_TYPE | Description |
|------------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------|
| BOOL | INT | int | |
| TINYINT | INT | int | When it is unsigned, TIDB_TYPE is INT UNSIGNED. |
| SMALLINT | INT | int | When it is unsigned, TIDB_TYPE is INT UNSIGNED. |
| MEDIUMINT | INT | int | When it is unsigned, TIDB_TYPE is INT UNSIGNED. |
| INT | INT | int | When it is unsigned, TIDB_TYPE is INT UNSIGNED and AVRO_TYPE is long. |
| BIGINT | BIGINT | long | When it is unsigned, TIDB_TYPE is BIGINT UNSIGNED. If `avro-bigint-unsigned-handling-mode` is string, AVRO_TYPE is string. |
| TINYBLOB | BLOB | bytes | |
| BLOB | BLOB | bytes | |
| MEDIUMBLOB | BLOB | bytes | |
| LONGBLOB | BLOB | bytes | |
| BINARY | BLOB | bytes | |
| VARBINARY | BLOB | bytes | |
| TINYTEXT | TEXT | string | |
| TEXT | TEXT | string | |
| MEDIUMTEXT | TEXT | string | |
| LONGTEXT | TEXT | string | |
| CHAR | TEXT | string | |
| VARCHAR | TEXT | string | |
| FLOAT | FLOAT | double | |
| DOUBLE | DOUBLE | double | |
| DATE | DATE | string | |
| DATETIME | DATETIME | string | |
| TIMESTAMP | TIMESTAMP | string | |
| TIME | TIME | string | |
| YEAR | YEAR | int | |
| BIT | BIT | bytes | |
| JSON | JSON | string | |
| ENUM | ENUM | string | |
| SET | SET | string | |
| DECIMAL | DECIMAL | bytes | When `avro-decimal-handling-mode` is string, AVRO_TYPE is string. |

In the Avro protocol, two other `sink-uri` parameters might affect the Column data format as well: `avro-decimal-handling-mode` and `avro-bigint-unsigned-handling-mode`.

- `avro-decimal-handling-mode` controls how Avro handles decimal fields, including:

- string: Avro handles decimal fields as strings.
- precise: Avro handles decimal fields as bytes.

- `avro-bigint-unsigned-handling-mode` controls how Avro handles BIGINT UNSIGNED fields, including:

- string: Avro handles BIGINT UNSIGNED fields as strings.
- long: Avro handles BIGINT UNSIGNED fields as 64-bit signed integers, which might result in overflow.

The following is a configuration example:

{{< copyable "shell-regular" >}}

```shell
cdc cli changefeed create --pd=http://127.0.0.1:2379 --changefeed-id="kafka-avro-enable-extension" --sink-uri="kafka://127.0.0.1:9092/topic-name?kafka-version=2.6.0&protocol=avro&avro-decimal-handling-mode=string&avro-bigint-unsigned-handling-mode=string" --schema-registry=http://127.0.0.1:8081
```

Most SQL types are mapped to the base Column data format. Some other SQL types extend the base data format to provide more information.

BIT(64)

```
{
"name":"{{ColumnName}}",
"type":{
"connect.parameters":{
"tidb_type":"BIT",
"length":"64"
},
"type":"bytes"
}
}
```

ENUM/SET(a,b,c)

```
{
"name":"{{ColumnName}}",
"type":{
"connect.parameters":{
"tidb_type":"ENUM/SET",
"allowed":"a,b,c"
},
"type":"string"
}
}
```

DECIMAL(10, 4)

```
{
"name":"{{ColumnName}}",
"type":{
"connect.parameters":{
"tidb_type":"DECIMAL",
},
"logicalType":"decimal",
"precision":10,
"scale":4,
"type":"bytes"
}
}
```

## DDL events and schema changes

Avro does not generate DDL events downstream. It checks whether a schema changes each time a DML event occurs. If a schema changes, Avro generates a new schema and registers it with the Schema Registry. If the schema change does not pass the compatibility check, the registration fails. Avro does not resolve any schema compatibility issues.

Note that, even if a schema change passes the compatibility check and a new version is registered, the data producers and consumers still need to perform an upgrade to ensure normal running of the system.

Assume that the default compatibility policy of Confluent Schema Registry is `BACKWARD` and add a non-empty column to the source table. In this situation, Avro generates a new schema but fails to register it with Schema Registry due to compatibility issues. At this time, the changefeed enters an error state.

For more information about schemas, refer to [Schema Registry related documents](https://docs.confluent.io/platform/current/schema-registry/avro.html).

## Topic distribution

Schema Registry supports three [Subject Name Strategies](https://docs.confluent.io/platform/current/schema-registry/serdes-develop/index.html#subject-name-strategy): TopicNameStrategy, RecordNameStrategy, and TopicRecordNameStrategy. Currently, TiCDC Avro only supports TopicNameStrategy, which means that a Kafka topic can only receive data in one data format. Therefore, TiCDC Avro prohibits mapping multiple tables to the same topic. When you create a changefeed, an error will be reported if the topic rule does not include the `{schema}` and `{table}` placeholders in the configured distribution rule.
2 changes: 1 addition & 1 deletion ticdc/ticdc-canal-json.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ cdc cli changefeed create --pd=http://127.0.0.1:2379 --changefeed-id="kafka-cana

## TiDB extension field

The Canal-JSON protocol is originally designed for MySQL. It does not contain important fields such as the TiDB-specific unique identifier for the CommitTS transaction. To solve this problem, TiCDC appends a TiDB extension field to the Canal-JSON protocol format. After you set `enable-tidb-extension` to `true` (defaults to `false`) in `sink-uri`, TiCDC behaves as follows when generating Canal-JSON messages:
The Canal-JSON protocol is originally designed for MySQL. It does not contain important fields such as the TiDB-specific unique identifier for the CommitTS transaction. To solve this problem, TiCDC appends a TiDB extension field to the Canal-JSON protocol format. After you set `enable-tidb-extension` to `true` (`false` by default) in `sink-uri`, TiCDC behaves as follows when generating Canal-JSON messages:

* TiCDC sends DML Event and DDL Event messages that contain a field named `_tidb`.
* TiCDC sends WATERMARK Event messages.
Expand Down