-
Notifications
You must be signed in to change notification settings - Fork 0
/
learn_fc.ino
483 lines (405 loc) · 22.2 KB
/
learn_fc.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#include<Wire.h>
#include<EEPROM.h>
float kproll = 1.3;
float kiroll = 0.04;
float kdroll = 18.0;
int pid_max_roll = 400; // Maximum output of the PID-controller for roll (+/-)
float kppitch = kproll;
float kipitch = kiroll;
float kdpitch = kdroll;
int pid_max_pitch = pid_max_roll;
float kpyaw = 4.0;
float kiyaw = 0.02;
float kdyaw = 0.0;
int pid_max_yaw = 400;
boolean auto_level = true; // Auto level on (true) or off (false)
//Declaring global variables
byte last_channel_1, last_channel_2, last_channel_3, last_channel_4;
byte eeprom_data[36];
byte highByte, lowByte;
volatile int receiver_input_channel_1, receiver_input_channel_2, \
receiver_input_channel_3, receiver_input_channel_4;
int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4;
int esc_1, esc_2, esc_3, esc_4;
int throttle, battery_voltage;
int cal_int, start, gyro_address;
int receiver_input[5];
int temperature;
int acc_axis[4], gyro_axis[4];
float roll_level_adjust, pitch_level_adjust;
long acc_x, acc_y, acc_z, acc_total_vector;
unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4;
unsigned long timer_1, timer_2, timer_3, timer_4, current_time;
unsigned long loop_timer;
double gyro_pitch, gyro_roll, gyro_yaw;
double gyro_axis_cal[4];
float pid_error_temp;
float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error;
float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch, pid_last_pitch_d_error;
float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw, pid_last_yaw_d_error;
float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll;
boolean gyro_angles_set;
// Setup routine
void setup() {
//Serial.begin(57600)
//Copy the EEPROM data for fast access data.
for (start = 0; start <= 35; start++)eeprom_data[start] == EEPROM.read(start);
start = 0;
gyro_address = eeprom_data[32];
Wire.begin();
// Setting up the clock speed
TWBR = 12;
//Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs.
DDRD |= B11110000;
DDRB |= B00110000; // pinMode(13 & 12,OUTPUT)
//Use the led on the arduino for startup indication.
digitalWrite(12, HIGH);
//Check the EEPROM signature to make sure that the setup program is execulted
while (eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B')delay(10);
//The flight controller needs the MPU6050 with gyro and accelerometer
//If the setup is completed without MPU6050 stop the flight controller program
if (eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10);
set_gyro_registers();
for (cal_int = 0; cal_int < 1250 ; cal_int ++) { //Wait 5 seconds before continuing.
PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delayMicroseconds(3000); //Wait 3000us.
}
//Let's take multiple gyro data samples so we can determine the average gyro offset (calibration).
for (cal_int = 0; cal_int < 2000 ; cal_int ++) { //Take 2000 readings for calibration.
if (cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to indicate calibration.
gyro_signalen(); //Read the gyro output.
gyro_axis_cal[1] += gyro_axis[1]; //Ad roll value to gyro_roll_cal.
gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro_pitch_cal.
gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro_yaw_cal.
//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the gyro.
PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delay(3); //Wait 3 milliseconds before the next loop.
}
//Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset.
gyro_axis_cal[1] /= 2000; //Divide the roll total by 2000.
gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000.
gyro_axis_cal[3] /= 2000; //Divide the yaw total by
PCICR |= (1 << PCIE0); //Set PCIE0 to enable PCMSK0 scan.
PCMSK0 |= (1 << PCINT0); //Set PCINT0 (digital input 8) to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT1); //Set PCINT1 (digital input 9)to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT2); //Set PCINT2 (digital input 10)to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT3); //Set PCINT3 (digital input 11)to trigger an interrupt on state change.
//Wait until the receiver is active and the throttle is set to the lower position.
while (receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 || receiver_input_channel_4 < 1400) {
receiver_input_channel_3 = convert_receiver_channel(3);
receiver_input_channel_4 = convert_receiver_channel(4);
start++;
PORTD |= B11110000;
delayMicroseconds(1000);
PORTD &= B00001111;
delay(3);
if (start == 125) {
digitalWrite(12, !digitalRead(12));
start = 0;
}
}
start = 0;
//Load the battery voltage to the battery voltage variable
// 65 is the voltage compensation for the diode.
// 12.6V eqals ~5V @ analog 0.
// 12.6V equals 1023 analogRead(0)
// 1260 / 1023 = 1.2317
// The variable battery_voltage holds 1050 if the battery voltage is 10.5V
battery_voltage = (analogRead(0) + 65) * 1.2317;
loop_timer = micros();
//When everythin is done, turn off the led.
digitalWrite(12, LOW);
}
//MAIN PROGRAM LOOP
void loop() {
// Complementary filter is implemented.
//65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information).
gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3); //Gyro pid input is deg/sec.
gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3); //Gyro pid input is deg/sec.
gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3); //Gyro pid input is deg/sec.
// integrating the gyro raw values to angles in degrees
angle_pitch += gyro_pitch * 0.0000611;
angle_roll += gyro_roll * 0.0000611;
//adding coupling to the calculation
angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066);
angle_roll += anlge_pitch * sin(gyro_yaw * 0.000001066);
//accelerometer angle calculations
acc_total_vector = sqrt((acc_x * acc_x) + (acc_y * acc_y) + (acc_z * acc_z));
// calculating the pitch angle using acc values
if (abs(acc_y) < acc_total_vector) { // prevent asin to produce nan
// asin func returns value in radians, so converting to deg * by 57.296
angle_pitch_acc = asin((float)acc_y / acc_total_vector) * 57.296;
}
// calculating the roll angle using acc values
if (abs(acc_x) < acc_total_vector) {
angle_roll_acc = asin((float)acc_x / acc_total_vector) * -57.296;
}
// With the help of a spirit level, first check if the gyro is perfectly horizontal
// and note down the acc values. Use these values to calibrate the accelerometer
// here we use 0.0
angle_pitch_acc -= 0.0;
angle_roll_acc -= 0.0;
// Complementary filter
angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;
angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;
//
pitch_level_adjust = angle_pitch * 15;
roll_level_adjust = angle_roll * 15;
// auto_level = true in global definition
// not coding for autolevel then adjust = 0;
if (!auto_level) {
pitch_level_adjust = 0;
roll_level_adjust = 0;
}
//For starting the motors: throttle low and yaw left (step 1).
if (receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1;
//When yaw stick is back in the center position start the motors (step 2).
if (start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450) {
start = 2;
// For when the quadcopter is code is started, consider pitch and
// roll angles to be of that of accelerometer
angle_pitch = angle_pitch_acc;
angle_roll = angle_roll_acc;
gyro_angles_set = true;
// Reset the PID controllers for bumpless start.
pid_i_mem_roll = 0;
pid_last_roll_d_error = 0;
pid_i_mem_pitch = 0;
pid_last_pitch_d_error = 0;
pid_i_mem_yaw = 0;
pid_last_yaw_d_error = 0;
}
// Stopping the motors: throttle low and yaw right.
if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start = 0;
//The PID set point in deg/s is determined by the roll receiver input.
// In the case of dividing by 3 the max roll rate is approx 164 deg/s (500/3)
pid_roll_setpoint = 0;
// We need a little dead band of 16us for better results.
if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508;
else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1
pid_roll_setpoint -= roll_level_adjust;
pid_roll_setpoint /= 3.0;
//The PID setpoint in deg/s is determined by the pitch receiver input.
//In the case of dividing by 3 the max pitch rate is aprox 164 deg/s
pid_pitch_setpoint = 0;
//We need a little deadband of 16us for better results
if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508;
else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 - 1492;
pid_pitch_setpoint -= pitch_level_adjust;
pid_pitch_setpoint /= 3.0;
//The PID setpoint in deg/s is determined by the yaw receiver input.
//In the case of dividing by 3 the max yaw rate is aprox 164 deg/s
pid_yaw_setpoint = 0;
//We need a little dead band of 16us for better results.
//Do not yaw when turning off the motors
if(receiver_input_channel_3 > 1050){
if(receiver_input_channel_3 > 1050)pid_yaw_setpoint = (receiver_input_channel_4 - 1508)/3.0;
else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 - 1492)/3.0;
}
calculate_pid();
//The battery voltage is needed for compensation
//A complementary filter is used to reduce noise.
// 0.09853 = 0.08 * 1.2317
battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853;
// Turn on the led if the battery voltage is to low.
if(battery_voltage < 1000 && battery_voltage > 600)digitalWrite(12,HIGH);
// INPUTS to the ESCs as per the motor mixing algorithm
throttle = receiver_input_channel_3;
if(start == 2){
if(throttle > 1800) throttle = 1800;
esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw;
esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw;
esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw;
esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw;
// do learn the working of pwm signal with battery to understand the
// below code. the below code compensates te voltage drop in order to
// keep the rpm constant. when voltage drops lets say 1100, then the esc which
// was 1600 will be now 1709.14. The below model looks an empirical one.
if(battery_voltage < 1240 && battery_voltage > 800){
esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500);
esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500);
esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500);
esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500);
}
if (esc_1 < 1100) esc_1 = 1100;
if (esc_2 < 1100) esc_2 = 1100;
if (esc_3 < 1100) esc_3 = 1100;
if (esc_4 < 1100) esc_4 = 1100;
if(esc_1 > 2000)esc_1 = 2000; //Limit the esc-1 pulse to 2000us.
if(esc_2 > 2000)esc_2 = 2000; //Limit the esc-2 pulse to 2000us.
if(esc_3 > 2000)esc_3 = 2000; //Limit the esc-3 pulse to 2000us.
if(esc_4 > 2000)esc_4 = 2000;
}
else {
esc_1 = 1000;
esc_2 = 1000;
esc_3 = 1000;
esc_4 = 1000;
}
// ! ! ! ! ! ! !
//Because of the angle calculation the loop time is getting very important.
// longer or shorter than 4000us the angle calculation is off. if you modify the code
// make sure the loop time is still 4000us and no logner!
if (micros() - loop_timer > 4050)digitalWrite(12,HIGH);
while(micros() - loop_timer < 4000);
loop_timer = micros();
PORTD |= B11110000;
timer_channel_1 = esc_1 + loop_timer;
timer_channel_2 = esc_2 + loop_timer;
timer_channel_3 = esc_3 + loop_timer;
timer_channel_4 = esc_4 + loop_timer;
}
ISR(PCINT0_vect) {
current_time = micros();
//Channel 1=========================================
if (PINB & B00000001) { //Is input 8 high?
if (last_channel_1 == 0) { //Input 8 changed from 0 to 1.
last_channel_1 = 1; //Remember current input state.
timer_1 = current_time; //Set timer_1 to current_time.
}
}
else if (last_channel_1 == 1) { //Input 8 is not high and changed from 1 to 0.
last_channel_1 = 0; //Remember current input state.
receiver_input[1] = current_time - timer_1; //Channel 1 is current_time - timer_1.
}
//Channel 2=========================================
if (PINB & B00000010 ) { //Is input 9 high?
if (last_channel_2 == 0) { //Input 9 changed from 0 to 1.
last_channel_2 = 1; //Remember current input state.
timer_2 = current_time; //Set timer_2 to current_time.
}
}
else if (last_channel_2 == 1) { //Input 9 is not high and changed from 1 to 0.
last_channel_2 = 0; //Remember current input state.
receiver_input[2] = current_time - timer_2; //Channel 2 is current_time - timer_2.
}
//Channel 3=========================================
if (PINB & B00000100 ) { //Is input 10 high?
if (last_channel_3 == 0) { //Input 10 changed from 0 to 1.
last_channel_3 = 1; //Remember current input state.
timer_3 = current_time; //Set timer_3 to current_time.
}
}
else if (last_channel_3 == 1) { //Input 10 is not high and changed from 1 to 0.
last_channel_3 = 0; //Remember current input state.
receiver_input[3] = current_time - timer_3; //Channel 3 is current_time - timer_3.
}
//Channel 4=========================================
if (PINB & B00001000 ) { //Is input 11 high?
if (last_channel_4 == 0) { //Input 11 changed from 0 to 1.
last_channel_4 = 1; //Remember current input state.
timer_4 = current_time; //Set timer_4 to current_time.
}
}
else if (last_channel_4 == 1) { //Input 11 is not high and changed from 1 to 0.
last_channel_4 = 0; //Remember current input state.
receiver_input[4] = current_time - timer_4; //Channel 4 is current_time - timer_4.
}
}
void set_gyro_registers() {
if (eeprom_data[31] == 1) {
Wire.beginTransmission(gyro_address);
// power management register
Wire.write(0x6B);
Wire.write(0x00);
Wire.endTransmission();
Wire.beginTransmission(gyro_address);
// gyro config for full scale range setup = +/- 500 deg/s
Wire.write(0x1B);
Wire.write(0x08);
Wire.endTransmission();
Wire.beginTransmission(gyro_address);
// accel config for full scale range of +/- 4g
Wire.write(0x1C);
Wire.write(0x10);
Wire.endTransmission();
//Let's perform a random register check to see if the values are written correctly
Wire.beginTransmission(gyro_address);
Wire.write(0x1B);
Wire.endTransmission();
Wire.requestFrom(gyro_address, 1);
while (Wire.available() < 1);
if (Wire.read() != 0x08) {
digitalWrite(12, HIGH);
while (1)delay(10);
}
Wire.beginTransmission(gyro_address);
// for FSYNC and DLPF
Wire.write(0x1A);
Wire.write(0x03);
Wire.endTransmission();
}
}
void gyro_signalen() {
if (eeprom_data[31] == 1) {
Wire.beginTransmission(gyro_address);
Wire.write(0x3B);
Wire.endTransmission();
Wire.requestFrom(gyro_address, 14);
receiver_input_channel_1 = convert_receiver_channel(1);
receiver_input_channel_2 = convert_receiver_channel(2);
receiver_input_channel_3 = convert_receiver_channel(3);
receiver_input_channel_4 = convert_receiver_channel(4);
while (Wire.available() < 14);
acc_axis[1] = Wire.read() << 8 | Wire.read();
acc_axis[2] = Wire.read() << 8 | Wire.read();
acc_axis[3] = Wire.read() << 8 | Wire.read();
temperature = Wire.read() << 8 | Wire.read(); //Add the low and high byte to the temperature variable.
gyro_axis[1] = Wire.read() << 8 | Wire.read(); //Read high and low part of the angular data.
gyro_axis[2] = Wire.read() << 8 | Wire.read(); //Read high and low part of the angular data.
gyro_axis[3] = Wire.read() << 8 | Wire.read();
}
if (cal_int == 2000) {
gyro_axis[1] -= gyro_axis_cal[1];
gyro_axis[2] -= gyro_axis_cal[2];
gyro_axis[3] -= gyro_axis_cal[3];
}
// gyro roll = gyro_axis[1]
gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011];
// below statement checks if the axis is inverted.
if (eeprom_data[28] & 0b10000000)gyro_roll *= -1;
gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011];
if (eeprom_data[29] & 0b10000000)gyro_pitch *= -1;
gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011];
if (eeprom_data[30] & 0b10000000)gyro_yaw *= -1;
// set the correct axis for acc.
acc_x = acc_axis[eeprom_data[29] & 0b00000011]; //Set acc_x to the correct axis that was stored in the EEPROM.
if (eeprom_data[29] & 0b10000000)acc_x *= -1; //Invert acc_x if the MSB of EEPROM bit 29 is set.
acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct axis that was stored in the EEPROM.
if (eeprom_data[28] & 0b10000000)acc_y *= -1; //Invert acc_y if the MSB of EEPROM bit 28 is set.
acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct axis that was stored in the EEPROM.
if (eeprom_data[30] & 0b10000000)acc_z *= -1;
}
void calculate_pid(){
//Roll calculations
pid_error_temp = gyro_roll_input - pid_roll_setpoint;
pid_i_mem_roll += pid_i_gain_roll * pid_error_temp;
if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll;
else if (pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1;
pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll * (pid_error_temp - pid_last_roll_d_error);
if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll;
else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1;
pid_last_roll_d_error = pid_error_temp;
//Pitch calculations
pid_error_temp = gyro_pitch_input - pid_pitch_setpoint;
pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp;
if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch;
else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1;
pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch * (pid_error_temp - pid_last_pitch_d_error);
if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch;
else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1;
pid_last_pitch_d_error = pid_error_temp;
//Yaw calculations
pid_error_temp = gyro_yaw_input - pid_yaw_setpoint;
pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp;
if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw;
else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1;
pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw * (pid_error_temp - pid_last_yaw_d_error);
if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw;
else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1;
pid_last_yaw_d_error = pid_error_temp;
}